Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(14): 5061-5081, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577352

ABSTRACT

Graphdiyne (GDY)-based materials, owing to their unique structure and tunable electronic properties, exhibit great potential in the fields of catalysis, energy, environmental science, and beyond. In particular, GDY/metal oxide hybrid materials (GDY/MOs) have attracted extensive attention in energy and environmental catalysis. The interaction between GDY and metal oxides can increase the number of intrinsic active sites, facilitate charge transfer, and regulate the adsorption and desorption of intermediate species. In this review, we summarize the structure, synthesis, advanced characterization, small molecule activation mechanism and applications of GDY/MOs in energy conversion and environmental remediation. The intrinsic structure-activity relationship and corresponding reaction mechanism are highlighted. In particular, the activation mechanisms of reactant molecules (H2O, O2, N2, etc.) on GDY/MOs are systemically discussed. Finally, we outline some new perspectives of opportunities and challenges in developing GDY/MOs for efficient energy and environmental catalysis.

2.
Angew Chem Int Ed Engl ; 62(43): e202312808, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37684740

ABSTRACT

Selective oxidation of alcohols under mild conditions remains a long-standing challenge in the bulk and fine chemical industry, which usually requires environmentally unfriendly oxidants and bases that are difficult to separate. Here, a plasmonic catalyst of nitrogen-doped carbon-encapsulated metallic Co nanoparticles (Co@NC) with an excellent catalytic activity towards selective oxidation of alcohols is demonstrated. With light as only energy input, the plasmonic Co@NC catalyst effectively operates via combining action of the localized surface-plasmon resonance (LSPR) and the photothermal effects to achieve a factor of 7.8 times improvement compared with the activity of thermocatalysis. A high turnover frequency (TOF) of 15.6 h-1 is obtained under base-free conditions, which surpasses all the reported catalytic performances of thermocatalytic analogues in the literature. Detailed characterization reveals that the d states of metallic Co gain the absorbed light energy, so the excitation of interband d-to-s transitions generates energetic electrons. LSPR-mediated charge injection to the Co@NC surface activates molecular oxygen and alcohol molecules adsorbed on its surface to generate the corresponding radical species (e.g., ⋅O2 - , CH3 O⋅ and R-⋅CH-OH). The formation of multi-type radical species creates a direct and forward pathway of oxidative esterification of benzyl alcohol to speed up the production of esters.

SELECTION OF CITATIONS
SEARCH DETAIL
...