Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 33(8): 5211-5221, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37148348

ABSTRACT

OBJECTIVES: To identify optimized MRI markers for evaluating chronic kidney disease (CKD) and renal interstitial fibrosis (IF). MATERIALS AND METHODS: This prospective study included 43 patients with CKD and 20 controls. The CKD group was divided into mild and moderate-to-severe subgroups based on pathological results. Scanned sequences included T1 mapping, R2* mapping, intravoxel incoherent motion imaging, and diffusion-weighted imaging. One-way analyses of variance were used to compare MRI parameters among groups. Correlations of MRI parameters with estimated glomerular filtration rate (eGFR) and renal IF were analyzed using age as covariates. The support vector machine (SVM) model was used to evaluate the diagnostic efficacy of multiparametric MRI. RESULTS: Compared to control values, renal cortical apparent diffusion coefficient (cADC), medullary ADC (mADC), cortical pure diffusion coefficient (cDt), medullary Dt (mDt), cortical shifted apparent diffusion coefficient (csADC), and medullary sADC (msADC) values gradually decreased in the mild and moderate-to-severe groups, while cortical T1 (cT1) and medullary T1 (mT1) values gradually increased. Values of cADC, mADC, cDt, mDt, cT1, mT1, csADC, and msADC were significantly associated with eGFR and IF (p < 0.001). The SVM model indicated that multiparametric MRI combining cT1 and csADC can distinguish patients with CKD from controls with high accuracy (0.84), sensitivity (0.70), and specificity (0.92) (AUC: 0.96). Multiparametric MRI combining cT1 and cADC exhibited high accuracy (0.91), sensitivity (0.95), and specificity (0.81) for evaluating IF severity (AUC: 0.96). CONCLUSION: Multiparametric MRI combining T1 mapping and diffusion imaging may be of clinical utility in non-invasive assessment of CKD and IF. CLINICAL RELEVANCE STATEMENT: This study shows that multiparametric MRI combining T1 mapping and diffusion imaging may be clinically useful in the non-invasive assessment of chronic kidney disease (CKD) and interstitial fibrosis; this could provide information for risk stratification, diagnosis, treatment, and prognosis. KEY POINTS: • Optimized MRI markers for evaluating chronic kidney disease and renal interstitial fibrosis were investigated. • Renal cortex/medullary T1 values increased as interstitial fibrosis increased; cortical shifted apparent diffusion coefficient (csADC) correlated significantly with eGFR and interstitial fibrosis. • Support vector machine (SVM) combining cortical T1 (cT1) and csADC/cADC effectively identifies chronic kidney disease and accurately predicts renal interstitial fibrosis.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Renal Insufficiency, Chronic , Humans , Prospective Studies , Renal Insufficiency, Chronic/diagnostic imaging , Renal Insufficiency, Chronic/pathology , Kidney/diagnostic imaging , Kidney/pathology , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods , Fibrosis
2.
Front Cardiovasc Med ; 9: 1001269, 2022.
Article in English | MEDLINE | ID: mdl-36386316

ABSTRACT

Objectives: This study aimed to determine whether texture analysis (TA) and machine learning-based classifications can be applied in differential diagnosis of cardiac amyloidosis (CA) and hypertrophic cardiomyopathy (HCM) using non-contrast cine cardiac magnetic resonance (CMR) images. Methods: In this institutional review board-approved study, we consecutively enrolled 167 patients with CA (n = 85), HCM (n = 82), and 84 patients with normal CMR served as controls. All cases were randomized into training [119 patients (70%)] and validation [48 patients (30%)] groups. A total of 275 texture features were extracted from cine images. Based on regression analysis with the least absolute shrinkage and selection operator (LASSO), nine machine learning models were established and their diagnostic performance determined. Results: Nineteen radiomics texture features derived from cine images were used to differentiate CA and HCM. In the validation cohort, the support vector machine (SVM), which had an accuracy of 0.85, showed the best performance (MCC = 0.637). Gray level non-uniformity (GLevNonU) was the single most effective feature. The combined model of radiomics texture features and conventional MR metrics had superior discriminatory performance (AUC = 0.89) over conventional MR metrics model (AUC = 0.79). Moreover, results showed that GLevNonU levels in HCM patients were significantly higher compared with levels in CA patients and control groups (P < 0.001). A cut-off of GLevNonU ≥ 25 was shown to differentiate between CA and HCM patients, with an area under the curve (AUC) of 0.86 (CI:0.804-0.920). Multiple comparisons tests showed that GLevNonU was significantly greater in LGE+, relative to LGE-patient groups (CA+ vs. CA- and HCM+ vs. HCM-, P = 0.01, 0.001, respectively). Conclusion: Machine learning-based classifiers can accurately differentiate between CA and HCM on non-contrast cine images. The radiomics-MR combined model can be used to improve the discriminatory performance. TA may be used to assess myocardial microstructure changes that occur during different stages of cardiomyopathies.

3.
J Magn Reson Imaging ; 54(5): 1529-1540, 2021 11.
Article in English | MEDLINE | ID: mdl-34291852

ABSTRACT

BACKGROUND: T1 mapping can potentially quantitatively assess the intrinsic properties of tumors. B1 correction can reduce the magnetic field inhomogeneity. PURPOSE: To assess the repeatability and reproducibility of B1 -corrected T1 mapping for lung cancer and the ability to identify pathological types. STUDY TYPE: Prospective reproducibility study. POPULATION: Sixty lung cancer patients (22 with emphysema) with a total of 60 lesions (adenocarcinoma [n = 23], squamous cell carcinoma [n = 19], and small-cell lung cancer [SCLC] [n = 18]). FIELD STRENGTH/SEQUENCE: A 3 T/B1 -corrected 3D variable flip angle T1 mapping and free-breathing diffusion-weighted imaging. ASSESSMENT: Intraobserver, interobserver, and test-retest reproducibility of minimum, maximum, mean, and SD of lung tumor T1 values were assessed. The correlation between mean T1 and apparent diffusion coefficient (ADC) and differences between different histological types of lung cancer were evaluated. STATISTICAL TESTS: Intraclass correlation coefficients (ICCs), within-subject coefficients of variation (WCVs), Bland-Altman plots, Pearson's correlation coefficient (r), and analysis of variance (ANOVA). A P value <0.05 was considered to be statistically significant. RESULTS: No significant differences were found in minimum, maximum, mean, and SD T1 values for repeated measurements (intraobserver and interobserver) and repeated examinations (P = 0.103-0.979). All parameters showed good intraobserver, interobserver and test-retest reproducibility (ICC, 0.780-0.978), except the maximum T1 value (ICC, 0.645-0.922). The mean T1 exhibited the best reproducibility and repeatability, with an average difference <6% for repeated measurements, <8% for repeated scans in lung cancer patients, and<10% for repeated scans in those with emphysema. The mean T1 correlated moderately with ADC (r = -0.580, -0.516, and -0.511 for observers A, B, and C). Both mean T1 and mean ADC were significantly different in SCLC patients compared with those in adenocarcinoma and squamous cell carcinoma patients. DATA CONCLUSION: The mean T1 from B1 -corrected T1 mapping is a repeatable parameter with the potential to identify histological types of lung cancer and thus may be a promising imaging biomarker for characterizing lung cancer. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Diffusion Magnetic Resonance Imaging , Lung Neoplasms , Biomarkers , Humans , Lung Neoplasms/diagnostic imaging , Prospective Studies , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...