Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Signal Transduct Target Ther ; 9(1): 80, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565536

ABSTRACT

RNA-binding proteins (RBPs)-RNA networks have contributed to cancer development. Circular RNAs (circRNAs) are considered as protein recruiters; nevertheless, the patterns of circRNA-protein interactions in colorectal cancer (CRC) are still lacking. Processing bodies (PBs) formed through liquid-liquid phase separation (LLPS) are membrane-less organelles (MLOs) consisting of RBPs and RNA. Previous evidence suggests a connection between PBs dynamics and cancer progression. Despite the increasingly acknowledged crucial role of RBPs and RNA in the accumulation and maintenance of MLOs, there remains a lack of specific research on the interactions between PBs-related RBPs and circRNAs in CRC. Herein, we identify that MEX-3 RNA binding family member A (MEX3A), frequently upregulated in CRC tissues, predicts poorer patient survival. Elevated MEX3A accelerates malignance and inhibits autophagy of CRC cells. Importantly, MEX3A undergoes intrinsically disordered regions (IDRs)-dependent LLPS in the cytoplasm. Specifically, circMPP6 acts as a scaffold to facilitate the interaction between MEX3A and PBs proteins. The MEX3A/circMPP6 complex modulates PBs dynamic and promotes UPF-mediated phosphodiesterase 5A (PDE5A) mRNA degradation, consequently leading to the aggressive properties of CRC cells. Clinically, CRC patients exhibiting high MEX3A expression and low PDE5A expression have the poorest overall survival. Our findings reveal a collaboration between MEX3A and circMPP6 in the regulation of mRNA decay through triggering the PBs aggregation, which provides prognostic markers and/or therapeutic targets for CRC.


Subject(s)
Colorectal Neoplasms , RNA, Circular , Humans , Autophagy/genetics , Colorectal Neoplasms/metabolism , Family , Phosphoproteins/metabolism , Proteins/metabolism , RNA/genetics , RNA, Circular/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
Drug Resist Updat ; 73: 101052, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262246

ABSTRACT

AIMS: This investigation aims to elucidate the mechanism underlying sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC). METHODS: The role of dual specificity phosphatase 4 (DUSP4) in sorafenib-treated HCC was investigated using comprehensive assessments both in vitro and in vivo, including Western blotting, qRT-PCR, cell viability assay, lipid reactive oxygen species (ROS) assay, immunohistochemistry, and xenograft tumor mouse model. Additionally, label-free quantitative proteomics was employed to identify potential proteins associated with DUSP4. RESULTS: Our study revealed that suppression of DUSP4 expression heightens the susceptibility of HCC cells to ferroptosis inducers, specifically sorafenib and erastin, in both in vitro and in vivo settings. Furthermore, we identified DUSP4-mediated regulation of key ferroptosis-related markers, such as ferritin light chain (FTL) and ferritin heavy chain 1 (FTH1). Notably, label-free quantitative proteomics unveiled the phosphorylation of threonine residue T148 on YTH Domain Containing 1 (YTHDC1) by DUSP4. Further investigations unraveled that YTHDC1, functioning as an mRNA nuclear export regulator, is a direct target of DUSP4, orchestrating the subcellular localization of FTL and FTH1 mRNAs. Significantly, our study highlights a strong correlation between elevated DUSP4 expression and sorafenib resistance in HCC. CONCLUSIONS: Our findings introduce DUSP4 as a negative regulator of sorafenib-induced ferroptosis. This discovery opens new avenues for the development of ferroptosis-based therapeutic strategies tailored for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Phosphoric Monoester Hydrolases/therapeutic use , Ferroptosis/genetics , Cell Line, Tumor
3.
Mol Ther ; 30(8): 2828-2843, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35524408

ABSTRACT

Translational reprogramming is part of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, which acts to the advantage of cancer growth and development in different stress conditions, but the mechanism of ER stress-related translational reprogramming in colorectal carcinoma (CRC) progression remains unclear. Here, we identified that Krüppel-like factor 16 (KLF16) can promote CRC progression and stress tolerance through translational reprogramming. The expression of KLF16 was upregulated in CRC tissues and associated with poor prognosis for CRC patients. We found that ER stress inducers can recruit KLF16 to the nucleolus and increase its interaction with two essential proteins for nucleolar homeostasis: nucleophosmin1 (NPM1) and fibrillarin (FBL). Moreover, knockdown of KLF16 can dysregulate nucleolar homeostasis in CRC cells. Translation-reporter system and polysome profiling assays further showed that KLF16 can effectively promote cap-independent translation of ATF4, which can enhance ER-phagy and the proliferation of CRC cells. Overall, our study unveils a previously unrecognized role for KLF16 as an ER stress regulator through mediating translational reprogramming to enhance the stress tolerance of CRC cells and provides a potential therapeutic vulnerability.


Subject(s)
Colorectal Neoplasms , Kruppel-Like Transcription Factors , Unfolded Protein Response , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Endoplasmic Reticulum Stress/genetics , Homeostasis , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...