Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34946691

ABSTRACT

Red deer (Cervus elaphus) blood is widely used as a health product. Mixed culture fermentation improves the flavor and bioavailability of deer blood (DB), and both DB and its enzymatic hydrolysates exhibit anti-fatigue activities in vivo. To elucidate the bioactive ingredients, enzymatic hydrolysates were fractioned into different peptide groups using reversed phase resin chromatography, and then evaluated using an exhaustive swimming mice model to assess swimming time and biochemical parameters. The structures of the bioactive peptides were elucidated by high performance liquid chromatography with tandem mass detection. Thirty-one compounds were identified as glutamine or branched-chain amino acids containing short peptides, of which Val-Ala-Asn, Val-Val-Ser-Ala, Leu(Ile)-Leu(Ile)-Val-Thr, Pro-His-Pro-Thr-Thr, Glu-Val-Ala-Phe and Val-Leu(Ile)-Asp-Ala-Phe are new peptides. The fractions containing glutamine or valine short peptides, Ala-Gln, Val-Gln, Val-Val-Ser-Ala, Val-Leu(Ile)-Ser improved exercise endurance by increasing hepatic glycogen (HG) storage. The peptides group containing Leu(Ile)-Leu(Ile), Asp-Gln, Phe- Leu(Ile), Val-Val-Tyr-Pro contributed to decreased muscle lactic acid (MLA)accumulation and to an increase in HG. The anti-fatigue activities of DB hydrolysates were attributed to the synergistic effects of different types of peptides.


Subject(s)
Blood Proteins/chemistry , Blood , Deer/blood , Fatigue/metabolism , Oligopeptides , Protein Hydrolysates/chemistry , Animals , Mice , Oligopeptides/chemistry , Oligopeptides/pharmacology
2.
Front Cell Neurosci ; 15: 653367, 2021.
Article in English | MEDLINE | ID: mdl-33841103

ABSTRACT

Intracerebral hemorrhage (ICH) is one of the leading causes of death and long-term disability worldwide. Mesenchymal stem cell (MSC) therapies have demonstrated improved outcomes for treating ICH-induced neuronal defects, and the neural network reconstruction and neurological function recovery were enhanced in rodent ICH models through the mechanisms of neurogenesis, angiogenesis, anti-inflammation, and anti-apoptosis. However, many key issues associated with the survival, differentiation, and safety of grafted MSCs after ICH remain to be resolved, which hinder the clinical translation of MSC therapy. Herein, we reviewed an overview of the research status of MSC transplantation after ICH in different species including rodents, swine, monkey, and human, and the challenges for MSC-mediated ICH recovery from pathological microenvironment have been summarized. Furthermore, some efficient strategies for the outcome improvement of MSC transplantation were proposed.

3.
Exp Ther Med ; 16(6): 4843-4852, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30542440

ABSTRACT

Intracerebral hemorrhage (ICH) may lead to physical and pathological damage and has been a focus of research for decades. Evaluating tensile damage caused by deformation in ICH is an important component of damage assessment for correct diagnosis and treatment. Traditional research on ICH paid little attention to quantified brain tissue damage resulting from mechanical factors, and only a few reported the mechanical properties of damaged brain tissue. The aim of the present study was to present an effective method that is able to evaluate the tissue damage degree in ICH, based on strain energy function. Two finite element analysis (FEA) models were analyzed: A three-dimensional (3D) model for tissue's tension experiment and a two-dimensional (2D) model for brain tissue's deformation in ICH. The polynomial fitting function of stress vs. stretch curve, which was derived from previous reports, was used in the FEA as the constitutive function of brain tissue. The present study demonstrated that white matter could be regarded as hyperelastic material when stretch was <1.343, and with stretch increasing, tissue injury exacerbated when stretch was >1.343. The strain energy loss was not linear in this process, and Neo-Hookean and Ogden model's results demonstrated a similar change in trend, but a difference in quantity. The results from 2D and 3D simulation, respectively, demonstrated the degree of damage according to the above dividing criteria and the possible distribution of tissue damage after ICH ictus. An analytical model from a biomechanical perspective for white matter injury in ICH may facilitate to improve clinical diagnosis and treatment.

4.
Article in English | MEDLINE | ID: mdl-25525442

ABSTRACT

Clarifying the intrinsic mechanisms of acupuncture's clinical effects has recently been gaining popularity. Here, we choose the Siguan acupoint (a combination of bilateral LI4 and Liv3) and its sham point to evaluate multiacupoint specificity. Thirty-one healthy volunteers were randomly divided into real acupoint (21 subjects) and sham acupoint (10 subjects) groups. Our study used a single block experimental design to avoid the influence of posteffects. Functional magnetic resonance imaging data were acquired during acupuncture stimulation. Results showed extensive increase in neuronal activities with Siguan acupuncture and significant differences between stimulation at real and sham points. Brain regions that were activated more by real acupuncture stimulation than by sham point acupuncture included somatosensory cortex (the superior parietal lobule and postcentral gyrus), limbic-paralimbic system (the calcarine gyrus, precuneus, cingulate cortex, and parahippocampal gyrus), visual-related cortex (the fusiform and occipital gyri), basal ganglia, and the cerebellum. In this way, our study suggests Siguan may elicit specific activities in human brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...