Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 466: 133591, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38295728

ABSTRACT

The widespread use of aqueous film-forming foam (AFFF) for firefighting and firefighter training has led to extensive per- and polyfluoroalkyl substance (PFAS) contamination in the environment. Challenges remain in the analytical determination of PFASs via liquid chromatography-mass spectrometry (LC-MS), particularly when attempting to include ultrashort-chain perfluoroalkyl acids (PFAAs) and longer-chain anionic and zwitterionic PFASs in a single direct injection. In this study, we assessed the performance of three analytical LC columns (C18, JJ, and Acclaim columns) to separate targeted and suspect PFASs in AFFF-impacted water samples collected from five sites. The C18 column failed to retain ultrashort-chain PFAAs while the JJ and Acclaim columns were not suitable for hydrophobic PFASs. Ultrashort-chain PFAAs were detected at three sites and comprised 1.6-18% of the total perfluoroalkyl carboxylic and sulfonic acids. Semi-quantified concentrations of suspect PFASs comprised 0.70-13% of the total PFASs. When attempting to capture the entirety of the PFAS mass in a water sample, the C18 column captured the broadest suite of suspect PFASs, while the JJ column quantified the most total PFAS mass. Results of this study highlight the importance and tradeoffs of LC column choice to comprehensively determine the composition of PFASs and their concentrations in AFFF-impacted water samples.

2.
Environ Sci Technol ; 57(44): 17154-17165, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37856848

ABSTRACT

While foam fractionation (FF) process has emerged as a promising technology for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater, management of the resulting foam concentrates with elevated concentrations of PFASs (e.g., >1 g/L) remains a challenge. Here, we applied hydrothermal alkaline treatment (HALT) to two foam concentrates derived from FF field demonstration projects that treated aqueous film-forming foam (AFFF)-impacted groundwater. Results showed >90% degradation and defluorination within 90 min of treatment (350 °C, 1 M NaOH) of all 62 PFASs (including cations, anions, and zwitterions) identified in foam concentrates. Observed rate constants for degradation of individual perfluoroalkyl sulfonates (PFSAs, CnF2n+1-SO3-), the most recalcitrant class of PFASs, in both foam concentrates were similar to values measured previously in other aqueous matrices, indicating that elevated initial PFAS concentrations (e.g., PFHxSinit = 0.55 g/L), dissolved organic carbon (DOC; up to 4.5 g/L), and salt levels (e.g., up to 325 mg/L chloride) do not significantly affect PFAS reaction kinetics. DOC was partially mineralized by treatment, but a fraction (∼15%) was recalcitrant. Spectroscopic characterization revealed molecular features of the HALT-recalcitrant DOC fraction, and nontarget high-resolution mass spectrometry tentatively identified 129 nonfluorinated HALT-recalcitrant molecules. Analysis of process energy requirements shows that treating PFAS-contaminated foam concentrates with HALT would add minimally (<5%) to the overall energy requirements of an integrated FF-HALT treatment train.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Groundwater/chemistry , Water , Chlorides/analysis
3.
Environ Sci Technol ; 56(10): 6647-6657, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35522245

ABSTRACT

Hydrothermal alkaline treatment (HALT) can effectively degrade per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foam (AFFF). However, information is lacking regarding the treatment of PFASs in actual groundwater and soil from AFFF-impacted sites, especially for complex soil matrices. Given the lack of studies on direct soil treatment for PFAS destruction, we herein applied HALT to two groundwater samples and three soil samples from AFFF-impacted sites and characterized the destruction of PFASs using high-resolution mass spectrometry. Results showed that the 148 PFASs identified in all collected field samples, including 10 cationic, 98 anionic, and 40 zwitterionic PFASs, were mostly degraded to nondetectable levels within 90 min when treated with 5 M NaOH at 350 °C. The near-complete defluorination, as evidenced by fluoride release measurements, confirmed the complete destruction of PFASs. While many structures, including perfluoroalkyl carboxylic acids and polyfluorinated substances, were readily degraded, perfluoroalkyl sulfonates (PFSAs, CnF2n+1-SO3-), most notably with short chain lengths (n = 3-5), were more recalcitrant. Rates of PFSA destruction in groundwater samples were similar to those measured in laboratory water solutions, but reactions in soil were slow, presumably due to base-neutralizing properties of the soil. Further, the degradation of PFASs in groundwaters and soils was found to be a function of reaction temperature, NaOH concentration, and reaction time. These findings have important implications for the remediation of AFFF-impacted sites.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Fluorocarbons/analysis , Groundwater/chemistry , Sodium Hydroxide/analysis , Soil , Water , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 55(5): 3283-3295, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33557522

ABSTRACT

The widespread use of aqueous film-forming foam (AFFF) for firefighting activities (e.g., fire training to extinguish fuel-based fires at aircraft facilities) has led to extensive groundwater and soil contamination by per- and polyfluoroalkyl substances (PFASs) that are highly recalcitrant to destruction using conventional treatment technologies. This study reports on the hydrothermal alkaline treatment of diverse PFASs present in AFFFs. Quantitative and semiquantitative high-resolution mass spectrometry analyses of PFASs demonstrate a rapid degradation of all 109 PFASs identified in two AFFFs (sulfonate- and fluorotelomer-based formulations) in water amended with an alkali (e.g., 1-5 M NaOH) at near-critical temperature and pressure (350 °C, 16.5 MPa). This includes per- and polyfluoroalkyl acids and a range of acid precursors. Most PFASs were degraded to nondetectable levels within 15 min, and the most recalcitrant perfluoroalkyl sulfonates were degraded within 30 min when treated with 5 M NaOH. 19F NMR spectroscopic analysis and fluoride ion analysis confirm the near-complete defluorination of PFASs in both dilute and concentrated AFFF mixtures, and no stable volatile organofluorine species were detected in reactor headspace gases by the gas chromatography-mass spectrometry analysis. These findings indicate a significant potential for application of hydrothermal treatment technologies to manage PFAS waste streams, including on-site treatment of unused AFFF chemical stockpiles, investigation-derived wastes, and concentrated source zone materials.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Fluorocarbons/analysis , Soil , Water , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 383: 121163, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31520934

ABSTRACT

Anaerobic digestion (AD) has shown potential to convert hydrothermal liquefaction wastewater (HTLWW) into biogas in previous studies. However, the identification of refractory components and further insights into the molecular transformations of organics in HTLWW are essential for developing more efficient AD processes. In this study, two HTLWWs were obtained from the temperature-derived hydrothermal liquefaction of sewage sludge at 170 ℃ and 320 ℃. Their molecular compositions, as well as their modifications in the subsequent AD process, were characterized using a suite of advanced molecular tools. The dissolved organic matter (DOM) in the high temperature-derived HTLWW was lower in molecular weight, less saturated, less oxidized, and enhanced in nitrogenous substances. During the AD process, most of the volatile compounds and low molecular weight (LMW) neutrals were removed, while biopolymers were the most refractory. Carboxylic-rich alicyclic molecules (CRAM), particularly those containing 3 to 5 N for low temperature-derived DOM and 1 to 3 N for high temperature-derived DOM, were resistant to anaerobic biodegradation. Meanwhile, compounds with fewer nitrogens and more carboxyl groups were preferentially produced. This molecular characterization of HTLWW-derived DOM and examination of its transformation during AD will contribute to the development of efficient methods for HTLWW treatment in the future.


Subject(s)
Sewage/chemistry , Wastewater/chemistry , Anaerobiosis , Biodegradation, Environmental , Biopolymers/chemistry , Spectrum Analysis/methods
6.
Water Res ; 168: 115199, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31655439

ABSTRACT

The critical challenge of hydrothermal liquefaction (HTL) for bio-oil production from biomass is the production of large amounts of aqueous products (HTL-AP) with high organic contents. The present study investigated the anaerobic digestion (AD) performances of HTL-AP under both thermophilic and mesophilic conditions, and molecular and metabolic analysis were conducted to provide insights into the different performances. The results showed that thermophilic AD had lower COD removal efficiency compared to mesophilic AD (45.0% vs. 61.6%). Liquid chromatography coupled with organic carbon detection and organic nitrogen (LC-OCD-OND) analysis showed that both high molecular weight (HMW) and low molecular weight (LMW) compounds were degraded to some extent and more LMW acids (LMWA) and recalcitrant aromatic compounds were degraded in the mesophilic reactor, which was the main reason of higher COD removal efficiency. Phenyl compounds (e.g. phenol and 2 methoxyphenol), furans and pyrazines were the recalcitrant chemicals detected through GC-MS analysis. Fourier transform ion cyclone resonance mass spectrometry (FT-ICR-MS) analysis demonstrated the complexity of HTL-AP and the proportions of phenolic or condensed aromatic compounds increased especially in the thermophilic effluents. Metabolites analysis showed that the reasons contributing to the differences of mesophilic and thermophilic AD were not only related to the degradation of organic compounds (e.g. benzoate degradation via CoA ligation) in HTL-AP but also related to the microbial autogenesis (e.g. fatty acid biosynthesis) as well as the environmental information processing. In addition, the enrichment of Mesotoga, responsible for the high degradation efficiency of LMWA, and Pelolinea, involved in the degradation of phenyl compounds, were found in mesophilic reactor, which was consistent with higher removal of corresponding organics.


Subject(s)
Bacteria , Bioreactors , Anaerobiosis , Biofuels , Biomass , Temperature
7.
Environ Int ; 133(Pt B): 105257, 2019 12.
Article in English | MEDLINE | ID: mdl-31675572

ABSTRACT

Hydrothermal liquefaction of sewage sludge to produce bio-oil and hydro-char unavoidably results in the production of high-strength organic wastewater (HTLWW). However, anaerobic digestion (AD) of HTLWW generally has low conversion efficiency due to the presence of complex and refractory organics. The present study showed that granular activated carbon (GAC) promoted the AD of HTLWW in continuous experiments, resulting in the higher methane yield (259 mL/g COD) compared to control experiment (202 mL/g COD). It was found that GAC increased the activities of both aceticlastic and hydrogenotrophic methanogens. The molecular transformation of organics in HTLWW was further analyzed. It was shown GAC promoted the degradation of soluble microbial by-products, fulvic- and humic-like substances as revealed by 3-dimensional fluorescence excitation-emission matrix (3D-EEM) analysis. Gas chromatography mass spectrometry (GC-MS) analysis showed that GAC resulted in the higher degradation of N-heterocyclic compounds, acids and aromatic compounds and less production of new organic species. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis also showed that GAC promoted the degradation of nitrogenous organics. In addition, it was shown that GAC improved the removal of less oxidized, higher nitrogen content, and higher double bond equivalent (DBE) organic compounds. Microbial analysis showed that GAC not only increased the microbial concentration, but also enriched more syntrophic bacteria (e.g., Syntrophorhabdus and Synergistes), which were capable of degrading a wide range of different organics including nitrogenous and aromatic organics. Furthermore, profound effects on the methanogens and the enrichment of Methanothrix instead of Methanosarcina were observed. Overall, the present study revealed the molecular transformation and microbial mechanism in the AD of HTLWW with the presence of GAC.


Subject(s)
Bacteria, Anaerobic/metabolism , Bioreactors , Charcoal/chemistry , Sewage/analysis , Anaerobiosis , Humans , Temperature , Waste Disposal, Fluid/methods
8.
Environ Sci Technol ; 52(13): 7486-7495, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29804453

ABSTRACT

Hydrochar is a carbonaceous material derived from hydrothermal liquefaction, and it carries good potential as a new material for environmental applications. However, little is known about the dissolved organic matter (DOM) associated with hydrochar and the consequences of its release. The relationship between the production temperature and the characteristics of DOM released from hydrochar as well as the associated biotoxicity was investigated using a suite of advanced molecular and spectroscopic tools. With the increase in production temperature, the resulted hydrochar-based DOM contained a higher content of phenols and organic acids but less sugars and furans. Meanwhile, the molecular structure of DOM shifted to lower molecular weight with higher organic contents containing <6 O atoms per compound, aromatics, and N-containing substances. While low-temperature hydrochar-derived DOM showed minimal biotoxicity, increase in production temperature to 330 °C led to a great rise in toxicity. This might be attributed to the increased contents of phenols, organic acids, and organics containing <6 O atoms and 1 N atom per compound. These results suggest that hydrochar-derived DOM have more negative impacts on the environment than the organics associated with biochar production. Such understanding highlights the importance of controlling the hydrochar production process.


Subject(s)
Organic Chemicals , Temperature
9.
Bioresour Technol ; 220: 471-478, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27611031

ABSTRACT

This study examined the effect of glycerol used as a co-solvent on yields of bio-oil derived from rice straw through hydrothermal liquefaction (HTL). The reaction was conducted in a high-pressure batch reactor with different volume ratios of glycerol to water. The quality of the derived bio-oil was analyzed in terms of its elemental composition, heating value, water content, ash content, and acid number. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry were conducted to analyze the chemical composition of the derived bio-oils. The following optimal conditions were obtained: 1:1 vol ratio of glycerol to water with 5wt% of Na2CO3 at 260°C for 1h. Under these conditions, 50.31wt% of bio-oil and 26.65wt% of solid residue were produced. Therefore, glycerol can be used as a co-solvent in HTL of rice straw at moderate temperatures to obtain bio-oil with high yield and quality.


Subject(s)
Biofuels , Glycerol/chemistry , Oryza/chemistry , Biomass , Conservation of Energy Resources , Gas Chromatography-Mass Spectrometry , Solvents , Spectroscopy, Fourier Transform Infrared , Temperature , Water/chemistry
10.
Electrophoresis ; 37(19): 2522-2530, 2016 10.
Article in English | MEDLINE | ID: mdl-27482944

ABSTRACT

Numerous technologies have been used to reclaim valuable chemicals from bio-oil. In this study, a combination of the basification-acidification process and column chromatography was employed for the separation of high-purity syringol and acetosyringone from rice straw-derived bio-oil. The optimal conditions for the basification-acidification process and the possible precipitation mechanism of the basification were explored. The results showed the following as the optimal conditions for the basification process: mass ratio of calcium hydroxide (Ca(OH)2 ) to bio-oil, 2.0; reaction temperature, 70°C; and reaction time, 30 min. The results also showed that 1.6 mol of hydrochloric acid (HCl) per gram of bio-oil was optimal for the acidification. The precipitation was found to proceed via a possible mechanism involving the reaction of the phenolic compounds in the bio-oil with Ca(OH)2 to produce a precipitate. After further separation by column chromatography, purities of 91.4 and 96.2% (from gas chromatography-mass spectrometry) were obtained for syringol and acetosyringone, respectively. Their recoveries for the whole process were 73.0 and 39.3%, respectively.


Subject(s)
Acetophenones/isolation & purification , Biofuels/analysis , Chemical Fractionation/methods , Gas Chromatography-Mass Spectrometry/methods , Oryza/chemistry , Pyrogallol/analogs & derivatives , Acetophenones/analysis , Acetophenones/chemistry , Calcium Hydroxide/chemistry , Hot Temperature , Hydrochloric Acid/chemistry , Hydrogen-Ion Concentration , Pyrogallol/analysis , Pyrogallol/chemistry , Pyrogallol/isolation & purification
11.
Bioresour Technol ; 182: 160-168, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25689310

ABSTRACT

Hydrothermal liquefaction can be used to convert rice straw into an aqueous phase product that contains valuable phenolic compounds. In experiments, commercial adsorption resin XAD-4 was modified by a benzene ring - α,α'-dichloro-p-xylene (DCX) - in order to separate the phenolic compounds from the aqueous phase product; and, the optimal conditions for separation were explored. The results showed that, after modification of the resin, its adsorption capacity improved by 50%, due to increases in surface area, pore volume and micropore volume. The selectivity of the resin increased when the benzene ring was introduced as the ring formed hydrogen bonds with the compounds. The optimal conditions for separation were desorption agent of 40%, 45% and 55% ethanol solution, a flow rate of 2.5-5 mL/min, and a ratio of the sample volume to the column volume was 1:1. The total content of phenolic compounds in aqueous solution increased from 18% to 78% after separation.


Subject(s)
Phenols/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Adsorption , Hydrogen Bonding , Oryza , Phenols/isolation & purification , Resins, Synthetic/chemistry , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...