Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 8(1): 182, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34333543

ABSTRACT

Temperature changes affect apple development and production. Phenylpropanoid metabolism and hormone signaling play a crucial role in regulating apple growth and development in response to temperature changes. Here, we found that McMYB4 is induced by treatment at 28 °C and 18 °C, and McMYB4 overexpression results in flavonol and lignin accumulation in apple leaves. Yeast one-hybrid (Y1H) assays and electrophoretic mobility shift assays (EMSAs) further revealed that McMYB4 targets the promoters of the flavonol biosynthesis genes CHS and FLS and the lignin biosynthesis genes CAD and F5H. McMYB4 expression resulted in higher levels of flavonol and lignin biosynthesis in apple during growth at 28 °C and 18 °C than during growth at 23 °C. At 28 °C and 18 °C, McMYB4 also binds to the AUX/ARF and BRI/BIN promoters to activate gene expression, resulting in acceleration of the auxin and brassinolide signaling pathways. Taken together, our results demonstrate that McMYB4 promotes flavonol biosynthesis and brassinolide signaling, which decreases ROS contents to improve plant resistance and promotes lignin biosynthesis and auxin signaling to regulate plant growth. This study suggests that McMYB4 participates in the abiotic resistance and growth of apple in response to temperature changes by regulating phenylpropanoid metabolism and hormone signaling.

2.
Plant Cell Physiol ; 59(5): 1027-1042, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29474693

ABSTRACT

Anthocyanins are plant pigments that contribute to the color of leaves, flowers and fruits, and that are beneficial to human health in the form of dietary antioxidants. The study of a transformable crabapple cultivar, 'India magic', which has red buds and green mature leaves, using mRNA profiling of four leaf developmental stages, allowed us to characterize molecular mechanisms regulating red color formation in early leaf development and the subsequent rapid down-regulation of anthocyanin biosynthesis. This analysis of differential gene expression during leaf development revealed that ethylene signaling-responsive genes are up-regulated during leaf pigmentation. Genes in the ethylene response factor (ERF), SPL, NAC, WRKY and MADS-box transcription factor (TF) families were identified in two weighted gene co-expression network analysis (WGCNA) modules as having a close relationship to anthocyanin accumulation. Analyses of network hub genes indicated that SPL TFs are located in central positions within anthocyanin-related modules. Furthermore, cis-motif and yeast one-hybrid assays suggested that several anthocyanin biosynthetic or regulatory genes are potential targets of SPL8 and SPL13B. Transient silencing of these two genes confirmed that they play a role in co-ordinating anthocyanin biosynthesis and crabapple leaf development. We present a high-resolution method for identifying regulatory modules associated with leaf pigmentation, which provides a platform for functional genomic studies of anthocyanin biosynthesis.


Subject(s)
Gene Regulatory Networks , Malus/genetics , Pigmentation/genetics , Plant Leaves/genetics , Sequence Analysis, RNA , Anthocyanins/biosynthesis , Base Sequence , Flavonoids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Ontology , Gene Silencing , Genes, Plant , Nucleotide Motifs/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
3.
PLoS One ; 12(10): e0186996, 2017.
Article in English | MEDLINE | ID: mdl-29073205

ABSTRACT

Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits.


Subject(s)
Fruit/metabolism , Malus/metabolism , Plant Proteins/metabolism , Temperature , Transcription Factors/metabolism , Waxes/metabolism , Cloning, Molecular , DNA, Complementary/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Gene Silencing , Malus/genetics , Malus/physiology , Mutation , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , Stress, Physiological/genetics , Transcription Factors/deficiency , Transcription Factors/genetics
4.
Front Plant Sci ; 8: 1286, 2017.
Article in English | MEDLINE | ID: mdl-28769974

ABSTRACT

Cedar-apple rust (Gymnosporangium yamadai Miyabe) is a fungal disease that causes substantial injury to apple trees and results in fruit with reduced size and quality and a lower commercial value. The molecular mechanisms underlying the primary and secondary metabolic effects of rust spots on the leaves of Malus apple cultivars are poorly understood. Using HPLC, we found that the contents of flavonoid compounds, especially anthocyanin and catechin, were significantly increased in rust-infected symptomatic tissue (RIT). The expression levels of structural genes and MYB transcription factors related to flavonoid biosynthesis were one- to seven-fold higher in the RIT. Among these genes, CHS, DFR, ANS, FLS and MYB10 showed more than a 10-fold increase, suggesting that these genes were expressed at significantly higher levels in the RIT. Hormone concentration assays showed that the levels of abscisic acid (ABA), ethylene (ETH), jasmonate (JA) and salicylic acid (SA) were higher in the RIT and were consistent with the expression levels of McNCED, McACS, McLOX and McNPR1, respectively. Our study explored the complicated crosstalk of the signal transduction pathways of ABA, ETH, JA and SA; the primary metabolism of glucose, sucrose, fructose and sorbitol; and the secondary metabolism of flavonoids involved in the rust resistance of Malus crabapple leaves.

5.
J Photochem Photobiol B ; 168: 40-49, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28167273

ABSTRACT

Fruit pigment accumulation, which represents an important indicator of nutrient quality and appearance value, is often affected by low light under rain, cloud, fog and haze conditions during the veraison period. It is not known whether continuous low light interferes with the production and accumulation of secondary metabolites in veraison fruit. In this paper, we measured pigments and the transcriptional level of genes related to secondary metabolites, i.e., flavonoid biosynthesis in the peel and flesh of Malus crabapple 'Radiant' fruit in response to normal light and shade from 10th July to 30th August. The results showed crosstalk between the flavonoid biosynthetic genes and the involvement of key transcription factors such as McMYB4, McMYB7, McMYB10, and McMYB16 in the regulation of the ratio of anthocyanins and flavanols, which accounted for the different colouration of the fruit peel and flesh under shade conditions. A model is proposed for the regulation of the flavonoid pathway in the peel and flesh of 'Radiant' fruit based on our study results. Moreover, the molecular mechanism for 'Radiant' fruit colouration provides reference information for understanding the light regulatory mechanism involved in the biosynthesis of flavonoids and for designing the next generation of apple breeding.


Subject(s)
Anthocyanins/biosynthesis , Flavonoids/biosynthesis , Fruit/metabolism , Light , Transcription Factors/physiology , Flavonoids/genetics , Fruit/chemistry , Gene Expression Regulation/radiation effects , Malus , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/radiation effects , Pigmentation/genetics , Pigmentation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...