Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 343: 112081, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579979

ABSTRACT

Chlorophyll biosynthesis and breakdown, important cellular processes for photosynthesis, occur in the chloroplast. As a semi-autonomous organelle, chloroplast development is mainly regulated by nuclear-encoded chloroplast proteins and proteins encoded by itself. However, the knowledge of chloroplast development regulated by other organelles is limited. Here, we report that the nuclear-localized XAP5 CIRCADIAN TIMEKEEPER (XCT) is essential for chloroplast development in Arabidopsis. In this study, significantly decreased chlorophyll content phenotypes of cotyledons and subsequently emerging organs from shoot apical meristem were observed in xct-2. XCT is constitutively expressed in various tissues and localized in the nuclear with speckle patterns. RNA-seq analysis identified 207 differently spliced genes and 1511 differently expressed genes, in which chloroplast development-, chlorophyll metabolism- and photosynthesis-related genes were enriched. Further biochemical assays suggested that XCT was co-purified with the well-known splicing factors and transcription machinery, suggesting dual functions of XCT in gene transcription and splicing. Interestingly, we also found that the chlorophyll contents in xct-2 significantly decreased under high temperature and high light condition, indicating XCT integrates temperature and light signals to fine-tune the chlorophyll metabolism in Arabidopsis. Therefore, our results provide new insights into chloroplast development regulation by XCT, a nuclear-localized protein, at the transcriptional and post-transcriptional level.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Photosynthesis , Nuclear Proteins/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant
2.
Chemosphere ; 353: 141535, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403121

ABSTRACT

Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.


Subject(s)
Environmental Pollutants , Wastewater , Proteobacteria , Waste Disposal, Fluid , Bacteria , Sodium Chloride , Bioreactors/microbiology , Bacteria, Anaerobic , Salinity
3.
Front Psychiatry ; 14: 1144697, 2023.
Article in English | MEDLINE | ID: mdl-37426090

ABSTRACT

Introduction: The comorbidity between major depressive disorder (MDD) and coronavirus disease of 2019 (COVID-19) related traits have long been identified in clinical settings, but their shared genetic foundation and causal relationships are unknown. Here, we investigated the genetic mechanisms behind COVID-19 related traits and MDD using the cross-trait meta-analysis, and evaluated the underlying causal relationships between MDD and 3 different COVID-19 outcomes (severe COVID-19, hospitalized COVID-19, and COVID-19 infection). Methods: In this study, we conducted a comprehensive analysis using the most up-to-date and publicly available GWAS summary statistics to explore shared genetic etiology and the causality between MDD and COVID-19 outcomes. We first used genome-wide cross-trait meta-analysis to identify the pleiotropic genomic SNPs and the genes shared by MDD and COVID-19 outcomes, and then explore the potential bidirectional causal relationships between MDD and COVID-19 outcomes by implementing a bidirectional MR study design. We further conducted functional annotations analyses to obtain biological insight for shared genes from the results of cross-trait meta-analysis. Results: We have identified 71 SNPs located on 25 different genes are shared between MDD and COVID-19 outcomes. We have also found that genetic liability to MDD is a causal factor for COVID-19 outcomes. In particular, we found that MDD has causal effect on severe COVID-19 (OR = 1.832, 95% CI = 1.037-3.236) and hospitalized COVID-19 (OR = 1.412, 95% CI = 1.021-1.953). Functional analysis suggested that the shared genes are enriched in Cushing syndrome, neuroactive ligand-receptor interaction. Discussion: Our findings provide convincing evidence on shared genetic etiology and causal relationships between MDD and COVID-19 outcomes, which is crucial to prevention, and therapeutic treatment of MDD and COVID-19.

4.
Poult Sci ; 102(4): 102469, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36709583

ABSTRACT

The yellow color of the skin is an important economic trait for yellow chickens. Low and non-uniform skin yellowness would reduce economic efficiency. However, the regulatory mechanism of chicken skin yellowness has not been fully elucidated. In this study, we evaluated the skin yellowness of 819 chickens by colorimeter and digital camera, which are from the same batch and the same age of 2 pure lines with significant differences in skin yellowness. A total of 982 candidate differential expressed genes (DEGs) were detected in duodenal tissue by RNA-seq analysis for high and low yellowness chickens. Among the DEGs, we chose fatty acid translocase (CD36) gene and identified a single nucleotide polymorphism (SNP) upstream of the CD36 gene that was significantly associated with skin yellowness at multiple parts of the chicken, and its different genotypes had significant effects on the promoter activity of the CD36 gene. These findings will help to further elucidate the molecular mechanism of chicken skin yellowness and is helpful for improving chicken skin yellowness.


Subject(s)
Chickens , Skin Pigmentation , Animals , Chickens/genetics , Phenotype , Skin , Polymorphism, Single Nucleotide
5.
Nano Lett ; 20(6): 4700-4707, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32453958

ABSTRACT

Metallic zinc as a rechargeable anode material for aqueous batteries has gained tremendous attention. Zn-air batteries, which operate in alkaline electrolytes, are promising with the highest theoretical volumetric energy density. However, rechargeable zinc anodes develop slowly in alkaline electrolytes due to passivation, dissolution, and hydrogen evolution issues. In this study, we report the design of a submicron zinc anode sealed with an ion-sieving coating that suppresses hydrogen evolution reaction. The design is demonstrated with ZnO nanorods coated by TiO2, which overcomes passivation, dissolution, and hydrogen evolution issues simultaneously. It achieves superior reversible deep cycling performance with a high discharge capacity of 616 mAh/g and Coulombic efficiency of 93.5% when cycled with 100% depth of discharge at lean electrolyte. It can also deeply cycle ∼350 times in a beaker cell. The design principle of this work may potentially be applied to other battery electrode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...