Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 120: 155044, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37634486

ABSTRACT

BACKGROUND: The urgent challenge for ischemic stroke treatment is the lack of effective neuroprotectants that target multiple pathological processes. Crebanine, an isoquinoline-like alkaloid with superior pharmacological activities, presents itself as a promising candidate for neuroprotection. However, its effects and mechanisms on ischemic stroke remain unknown. METHODS: The effects of crebanine on brain damage following ischemic stroke were evaluated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model. Mechanism of action was investigated using both MCAO/R rats and lipopolysaccharide (LPS)-activated BV-2 cells. RESULTS: We initially demonstrated that crebanine effectively ameliorated the neurological deficits in MCAO/R rats, while also reducing brain edema and infarction. Treatment with crebanine resulted in the up-regulation of NeuN+ fluorescence density and down-regulation of FJB+ cell count, and mitigated synaptic damage. Crebanine attenuated the hyperactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) by downregulating NADP+ and NADPH levels, suppressing gp91phox and p47phox expressions, and reducing p47phox membrane translocation in Iba-1+ cells. Additionally, crebanine reduced the quantity of Iba-1+ cells and protein expression. Correlation analysis has demonstrated that the inhibition of NOX2 activation in microglia is beneficial for mitigating I/R brain injuries. Moreover, crebanine exhibited significant antioxidant properties by down-regulating the expression of superoxide anion and intracellular reactive oxygen species in vivo and in vitro, and reducing lipid and DNA peroxidation. Crebanine exerted anti-inflammatory effect, as evidenced by the reduction in the expressions of nitric oxide, interleukin 1ß, tumor necrosis factor α, interleukin 6, and inducible nitric oxide synthase. The effect of crebanine was achieved through the suppression of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway. This is supported by evidence showing reduced NF-κB p65 promoter activity and nucleus translocation, as well as suppressed IκBα phosphorylation and degradation. Additionally, it inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. Importantly, the anti-oxidative stress and neuroinflammation effects of crebanine were further enhanced after silencing gp91phox and p47phox. CONCLUSION: Crebanine alleviated the brain damages of MCAO/R rats by inhibiting oxidative stress and neuroinflammation mediated by NOX2 in microglia, implying crebanine might be a potential natural drug for the treatment of cerebral ischemia.


Subject(s)
Brain Ischemia , Ischemic Stroke , Rats , Animals , NF-kappa B/metabolism , Microglia , NADPH Oxidase 2/metabolism , Neuroinflammatory Diseases , NADP/metabolism , NADP/pharmacology , NADPH Oxidases , Oxidative Stress , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain/metabolism , Reperfusion
2.
Phytomedicine ; 79: 153353, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33007731

ABSTRACT

BACKGROUND: Increasing evidence has shown that microglia-induced neuroinflammation is involved in the pathogenesis of ischemic stroke. Stepharine, one of the alkaloids extracted from Stephania japonica (Thunb.) Miers, exhibited strong inhibitory effect on microglial overactivation. However, it is not known whether it has the potential to prevent ischemic stroke. METHODS: The neuroprotective and anti-neuroinflammatory effects of stepharine were investigated in vivo and in vitro, using a rat model of middle cerebral artery occlusion (MCAO) and lipopolysaccharide (LPS)-stimulated BV-2 cells, respectively. RESULTS: In vivo, stepharine (500 µg/kg) suppressed neurological deficits scores, brain water content and cerebral infarct volume induced by MCAO. Moreover, stepharine (500 µg/kg) inhibited NeuN+ cells loss and Iba-1+ cells increase in the MCAO ischemic cortex. In vitro, stepharine (10, 30 µM) substantially inhibited nitric oxide release as well as the mRNA and protein expression of pro-inflammatory mediators [inducible nitric oxide synthase, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1ß] in LPS-activated BV-2 cells. LPS-induced increase of TLR4 expression, IκBα phosphorylation, and NF-κB p65 nuclear translocation was inhibited by stepharine (10, 30 µM). Molecular docking analysis showed that stepharine directly interacted with TLR4. SPR assay further confirmed that stepharine could bind to the TLR4/MD2 complex. Meanwhile, stepharine exhibited neuroprotective effects on SH-SY5Y cells cultured with LPS-treated conditioned medium. CONCLUSION: Our study demonstrated for the first time that stepharine improved the outcomes in MCAO rats, reduced neuronal loss, and suppressed microglial overactivation via the inhibition of TLR4/NF-κB pathway. These results suggest that stepharine might be a potential therapeutic agent for the treatment of ischemic stroke.


Subject(s)
Alkaloids/pharmacology , Neuroprotective Agents/pharmacology , Reperfusion Injury/drug therapy , Alkaloids/chemistry , Alkaloids/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line , Humans , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Microglia/drug effects , Microglia/metabolism , Molecular Docking Simulation , NF-kappa B/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism
3.
Bioorg Chem ; 91: 103175, 2019 10.
Article in English | MEDLINE | ID: mdl-31398598

ABSTRACT

Modulating inflammatory responses after stroke can prevent brain injury and, therefore, improve neurological outcome. Stephania japonica (Thunb.) Miers is a Chinese folk medicine with the function of dispelling the "wind and blockage" in the human body according to the Chinese medicine theory, in which the symptoms of stroke are caused by the "wind and blockage" in the body. In this paper, we for the first time linked S. japonica to stroke by clarifying fifteen alkaloidal constituents including five undescribed (1-5) ones and screening out six hasubanan type alkaloids (1-4, 7, 15) that elicited stronger anti-neuroinflammatory activities than the positive drug. Moreover, the total alkaloid fraction (ASJ) with previously undescribed 3 as the main component was subject to the in vivo evaluation of the protective effect in the MCAO-induced brain injury. The results showed that ASJ exhibited potent protective effect against brain injury in the MCAO rat model. The results reported in this paper suggested that the hasubanan alkaloids from S. japonica would be an important molecular source for discovering novel therapeutic agents for neuroinflammation-related diseases, such as stroke diseases.


Subject(s)
Alkaloids/pharmacology , Biological Products/pharmacology , Brain Injuries/drug therapy , Infarction, Middle Cerebral Artery/complications , Neuroprotective Agents/pharmacology , Stephania/chemistry , Alkaloids/chemistry , Animals , Biological Products/chemistry , Brain Injuries/etiology , Brain Injuries/pathology , Cerebral Infarction/drug therapy , Cerebral Infarction/pathology , Male , Mice , Nervous System Diseases/drug therapy , Nervous System Diseases/pathology , Neuroprotective Agents/chemistry , Rats , Rats, Sprague-Dawley
4.
ACS Appl Mater Interfaces ; 7(27): 14896-904, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26104101

ABSTRACT

A superhydrophilic and underwater superoleophobic PVDF membrane (PVDFAH) has been prepared by surface-coating of a hydrogel onto the membrane surface, and its superior performance for oil/water emulsion separation has been demonstrated. The coated hydrogel was constructed by an interfacial polymerization based on the thiol-epoxy reaction of pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) with diethylene glycol diglycidyl ether (PEGDGE) and simultaneously tethered on an alkaline-treated commercial PVDF membrane surface via the thio-ene reaction. The PVDFAH membranes can be fabricated in a few minutes under mild conditions and show superhydrophilic and underwater superoleophobic properties for a series of organic solvents. Energy dispersive X-ray (EDX) analysis shows that the hydrogel coating was efficient throughout the pore lumen. The membrane shows superior oil/water emulsion separation performance, including high water permeation, quantitative oil rejection, and robust antifouling performance in a series oil/water emulsions, including that prepared from crude oil. In addition, a 24 h Soxhlet-extraction experiment with ethanol/water solution (50:50, v/v) was conducted to test the tethered hydrogel stability. We see that the membrane maintained the water contact angle below 5°, indicating the covalent tethering stability. This technique shows great promise for scalable fabrication of membrane materials for handling practical oil emulsion purification.

SELECTION OF CITATIONS
SEARCH DETAIL
...