Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Autophagy ; 19(6): 1882-1884, 2023 06.
Article in English | MEDLINE | ID: mdl-36374269

ABSTRACT

Mcroautophagy/autophagy plays an important role in maintaining homeostasis during nutrient starvation. However, whether epitranscriptomic events are involved in this process remains unclear. Our recent findings suggest that m6A reader YTHDF3 has an essential role in autophagy induction. Elevated m6A modifications installed by METTL3 enable YTHDF3 to promote autophagosome formation and lysosomal function upon nutrient deficiency. This is due to YTHDF3 binding to the m6A modifications at the coding DNA sequence (CDS) and 3' untranslated region (UTR) around the stop codon of Foxo3 mRNA, recruiting EIF3A and EIF4B to facilitate FOXO3 translation, thus boosting autophagy. In this punctum, we discuss our finding for how YTHDF3 responds to nutrient starvation to promote autophagy flux, providing insights into RNA post-transcriptional modifications linking nutrient cues to autophagic upcycling.


Subject(s)
Autophagy , Autophagy/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Nat Commun ; 13(1): 5845, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195598

ABSTRACT

Autophagy is crucial for maintaining cellular energy homeostasis and for cells to adapt to nutrient deficiency, and nutrient sensors regulating autophagy have been reported previously. However, the role of eiptranscriptomic modifications such as m6A in the regulation of starvation-induced autophagy is unclear. Here, we show that the m6A reader YTHDF3 is essential for autophagy induction. m6A modification is up-regulated to promote autophagosome formation and lysosomal degradation upon nutrient deficiency. METTL3 depletion leads to a loss of functional m6A modification and inhibits YTHDF3-mediated autophagy flux. YTHDF3 promotes autophagy by recognizing m6A modification sites around the stop codon of FOXO3 mRNA. YTHDF3 also recruits eIF3a and eIF4B to facilitate FOXO3 translation, subsequently initiating autophagy. Overall, our study demonstrates that the epitranscriptome regulator YTHDF3 functions as a nutrient responder, providing a glimpse into the post-transcriptional RNA modifications that regulate metabolic homeostasis.


Subject(s)
Autophagy , Autophagy/genetics , Codon, Terminator , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptional Activation , Up-Regulation
3.
J Cancer ; 12(15): 4463-4477, 2021.
Article in English | MEDLINE | ID: mdl-34149910

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has a poor prognosis due to the high incidence of invasion and metastasis-related progression. However, the underlying mechanism remains elusive, and valuable biomarkers for predicting invasion, metastasis, and poor prognosis of HCC patients are still lacking. Methods: Immunohistochemistry (IHC) was performed on HCC tissues (n = 325), and the correlations between MST4 expression of the clinical HCC tissues, the clinicopathologic features, and survival were further evaluated. The effects of MST4 on HCC cell migratory and invasive properties in vitro were evaluated by Transwell and Boyden assays. The intrahepatic metastasis mouse model was established to evaluate the HCC metastasis in vivo. The PI3K inhibitor, LY294002, and a specific siRNA against Snail1 were used to investigate the roles of PI3K/AKT pathway and Snail1 in MST4-regulated EMT, migration, and invasion of HCC cells, respectively. Results: In this study, by comprehensively analyzing our clinical data, we discovered that low MST4 expression is highly associated with the advanced progression of HCC and serves as a prognostic biomarker for HCC patients of clinical-stage III-IV. Functional studies indicate that MST4 inactivation induces epithelial-to-mesenchymal transition (EMT) of HCC cells, promotes their migratory and invasive potential in vitro, and facilitates their intrahepatic metastasis in vivo, whereas MST4 overexpression exhibits the opposite phenotypes. Mechanistically, MST4 inactivation elevates the expression and nuclear translocation of Snail1, a key EMT transcription factor (EMT-TF), through the PI3K/AKT signaling pathway, thus inducing the EMT phenotype of HCC cells, and enhancing their invasive and metastatic potential. Moreover, a negative correlation between MST4 and p-AKT, Snail1, and Ki67 and a positive correlation between MST4 and E-cadherin were determined in clinical HCC samples. Conclusions: Our findings indicate that MST4 suppresses EMT, invasion, and metastasis of HCC cells by modulating the PI3K/AKT/Snail1 axis, suggesting that MST4 may be a potential prognostic biomarker for aggressive and metastatic HCC.

4.
J Cancer ; 11(17): 5106-5117, 2020.
Article in English | MEDLINE | ID: mdl-32742458

ABSTRACT

Objective: MST4 has exhibited functions in regulating cell polarity, Golgi apparatus, cell migration, and cancer. Mechanistically, it affects the activity of p-ERK, Hippo-YAP pathway and autophagy. The aim of this study is to further examine the functions of MST4 in hepatocellular carcinoma (HCC) and the underlying mechanism. Methods: The expression level of MST4 in HCC and noncancer adjacent liver tissues was determined by qRT-PCR and immunohistochemistry staining. Wild-type MST4 (MST4) and a dominant-negative mutant of MST4 (dnMST4) were overexpressed in HCC cell lines, respectively. CCK-8 assay, EdU incorporation assay, and soft agar assay were used to determine cell proliferation in vitro. The xenograft mouse model was employed to determine HCC cell growth in vivo. Cell cycle analysis was performed by PI staining and flow cytometry. The expression of key members in PI3K/AKT pathway was detected by Western blot analysis. Results: In our study, we reported new evidence that MST4 was frequently down-regulated in HCC tissues. Gain-of-function and loss-of-function experiments demonstrated that MST4 negatively regulated in vitro HCC cell proliferation. Additionally, MST4 overexpression suppressed Bel-7404 cell tumor growth in nude mice. Further experiments revealed that the growth-inhibitory effect of MST4 overexpression was partly due to a G1-phase cell cycle arrest. Importantly, mechanistic investigations suggested that dnMST4 significantly elevated the phosphorylation levels of key members of PI3K/AKT pathway, and the selective PI3K inhibitor LY294002 can reverse the proliferation-promoting effect of dnMST4. Conclusions: Overall, our results provide a new insight into the clinical significance, functions and molecular mechanism of MST4 in HCC, suggesting that MST4 might have a potential therapeutic value in the HCC clinical treatment.

5.
Int J Med Sci ; 17(7): 953-964, 2020.
Article in English | MEDLINE | ID: mdl-32308549

ABSTRACT

MicroRNA-19 (miR-19) is identified as the key oncogenic component of the miR-17-92 cluster. When we explored the functions of the dysregulated miR-19 in lung cancer, microarray-based data unexpectedly demonstrated that some immune and inflammatory response genes (i.e., IL32, IFI6 and IFIT1) were generally down-regulated by miR-19 overexpression in A549 cells, which prompted us to fully investigate whether the miR-19 family (i.e., miR-19a and miR-19b-1) was implicated in regulating the expression of immune and inflammatory response genes in cancer cells. In the present study, we observed that miR-19a or miR-19b-1 overexpression by miRNA mimics in the A549, HCC827 and CNE2 cells significantly downregulated the expression of interferon (IFN)-regulated genes (i.e., IRF7, IFI6, IFIT1, IFITM1, IFI27 and IFI44L). Furthermore, the ectopic miR-19a or miR-19b-1 expression in the A549, HCC827, CNE2 and HONE1 cells led to a general downward trend in the expression profile of major histocompatibility complex (MHC) class I genes (such as HLA-B, HLA-E, HLA-F or HLA-G); conversely, miR-19a or miR-19b-1 inhibition by the miRNA inhibitor upregulated the aforementioned MHC Class I gene expression, suggesting that miR-19a or miR-19b-1 negatively modulates MHC Class I gene expression. The miR-19a or miR-19b-1 mimics reduced the expression of interleukin (IL)-related genes (i.e., IL1B, IL11RA and IL6) in the A549, HCC827, CNE2 or HONE1 cells. The ectopic expression of miR-19a or miR-19b-1 downregulated IL32 expression in the A549 and HCC827 cells and upregulated IL32 expression in CNE2 and HONE1 cells. In addition, enforced miR-19a or miR-19b-1 expression suppressed IL-6 production by lung cancer and nasopharyngeal carcinoma (NPC) cells. Taken together, these findings demonstrate, for the first time, that miR-19 can modulate the expression of IFN-induced genes and MHC class I genes in human cancer cells, suggesting a novel role of miR-19 in linking inflammation and cancer, which remains to be fully characterized.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, MHC Class I , MicroRNAs/genetics , A549 Cells , Cell Line, Tumor , Humans , Interferons/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukins/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics
6.
Sci Rep ; 6: 34501, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27687577

ABSTRACT

Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5.

7.
Cancer Med ; 5(12): 3489-3499, 2016 12.
Article in English | MEDLINE | ID: mdl-27774777

ABSTRACT

MicroRNAs (miRNAs) may act as either tumor suppressors or oncogenes in various types of cancers. Previous studies have indicated that miR-17-5p is involved in the initiation and development of human tumors. However, its mechanism and function in nasopharyngeal carcinoma (NPC) remain largely unclear. In this study, we evaluated the expression profiles of miR-17-5p and p21 in NPC cell lines and tissues by quantitative real-time PCR (qRT-PCR). For the analysis, we have established a stable overexpression or depletion of miR-17-5p NPC cell lines for analyzing the effects of cell proliferation by MTT, colony formation, and cell cycle assay. A nude mice xenograft model was used to verify the tumor growth in vivo. MiR-17-5p was overexpressed, whereas the expression of p21 was downregulated in NPC cell lines and tissues. The miR-17-5p expression level was inversely correlated with the p21 mRNA level in NPC samples. Furthermore, analysis of 2-ΔΔCt value in 81 NPC patients suggested that the elevated expression level of miR-17-5p or the downregulated expression level of p21 was significantly correlated with tumor size (T classification) and tumor stage, and Kaplan-Meier survival analysis revealed a correlation between miR-17-5p or p21 expression level and overall survival times in 81 NPC patients. MiR-17-5p promoted cell growth in vivo and in vitro by directly targeting p21. Our results indicate that miR-17-5p can promote the occurrence of NPC and it may serve as a potential novel diagnostic maker or therapeutic target for NPC in the future.


Subject(s)
Carcinoma/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Nasopharyngeal Neoplasms/genetics , RNA Interference , p21-Activated Kinases/genetics , 3' Untranslated Regions , Animals , Carcinoma/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Humans , Mice , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Retinoblastoma Protein/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
8.
Genome ; 59(10): 816-826, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27643679

ABSTRACT

The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.


Subject(s)
Gene Expression , Gene Knockout Techniques , Genes, Reporter , Integrases/metabolism , Luciferases/genetics , Luminescent Proteins/genetics , Animals , Female , Homologous Recombination , Liver/metabolism , Male , Mice , Mice, Transgenic , Phenotype , Transcriptional Activation , Red Fluorescent Protein
9.
Oncoimmunology ; 5(3): e1086060, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27141341

ABSTRACT

There is an urgent need for more potent and safer approaches to eradicate cancer stem cells (CSCs) for curing cancer. In this study, we investigate cancer-killing activity (CKA) of cytokine-induced killer (CIK) cells against CSCs of hepatocellular carcinoma (HCC). To visualize CSCs in vitro by fluorescence imaging, and image and quantify CSCs in tumor xenograft-bearing mice by bioluminescence imaging, HCC cells were engineered with CSC detector vector encoding GFP and luciferase controlled by Nanog promoter. We found that CIK cells have a strong CKA in vitro against putative CSCs of HCC, as shown by tumorsphere formation and time-lapse imaging. Additionally, time-lapse recording firstly revealed that putative CSCs were attacked simultaneously by many CIK cells and finally eradicated by CIK cells, indicating the necessity of achieving sufficient effector-to-target ratios. We firstly illustrated that anti-NKG2D antibody blocking partially but significantly inhibited CKA of CIK cells against putative CSCs. More importantly, intravenous infusion of CIK cells remarkably delayed tumor growth in mice with a significant decrease in putative CSC number monitored by bioluminescence imaging. Taken together, these findings demonstrate CKA of CIK cells against putative CSCs of HCC, at least in part, by NKG2D-ligands recognition.

10.
Medicine (Baltimore) ; 95(7): e2713, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26886608

ABSTRACT

The miR-17-92 cluster and its 6 different mature microRNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a, play important roles in embryo development, immune system, kidney and heart development, adipose differentiation, aging, and tumorigenicity. Currently, increasing evidence indicates that some members of miR-17-92 cluster may be critical players in spermatogenesis, including miR-17, miR-18a, and miR-20a. However, the roles and underlying mechanisms of miR-17-92 in spermatogenesis remain largely unknown. Our results showed that the targeted disruption of miR-17-92 in the testes of adult mice resulted in severe testicular atrophy, empty seminiferous tubules, and depressed sperm production. This phenotype is partly because of the reduced number of spermatogonia and spermatogonial stem cells, and the significantly increased germ cell apoptosis in the testes of miR-17-92-deficient mice. In addition, overactivation of the mammalian target of rapamycin signaling pathway and upregulation of the pro-apoptotic protein Bim, Stat3, c-Kit, and Socs3 were also observed in miR-17-92-deficient mouse testes, which might be, at least partially if not all, responsible for the aforementioned phenotypic changes in mutant testes. Taken together, these findings suggest that miR-17-92 is essential for normal spermatogenesis in mice.


Subject(s)
MicroRNAs/metabolism , Spermatogenesis/physiology , TOR Serine-Threonine Kinases/biosynthesis , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Cell Line , Male , Membrane Proteins/metabolism , Mice , Proto-Oncogene Proteins/metabolism , Signal Transduction/physiology , Spermatogonia/metabolism , Testis/metabolism
11.
Oncotarget ; 6(33): 35023-39, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26418951

ABSTRACT

Cancer stem cells (CSCs) are considered to be the root cause for cancer treatment failure. Thus, there remains an urgent need for more potent and safer therapies against CSCs for curing cancer. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against putative CSCs of nasopharyngeal carcinoma (NPC) was fully evaluated in vitro and in vivo. To visualize putative CSCs in vitro by fluorescence imaging, and image and quantify putative CSCs in tumor xenograft-bearing mice by in vivo bioluminescence imaging, NPC cells were engineered with CSC detector vector encoding GFP and luciferase (Luc) under control of Nanog promoter. Our study reported in vitro intense tumor-killing activity of CIK cells against putative CSCs of NPC, as revealed by percentage analysis of side population cells, tumorsphere formation assay and Nanog-promoter-GFP-Luc reporter gene strategy plus time-lapse recording. Additionally, time-lapse imaging firstly illustrated that GFP-labeled or PKH26-labeled putative CSCs or tumorspheres were usually attacked simultaneously by many CIK cells and finally killed by CIK cells, suggesting the necessity of achieving sufficient effector-to-target ratios. We firstly confirmed that NKG2D blockade by anti-NKG2D antibody significantly but partially abrogated CIK cell-mediated cytolysis against putative CSCs. More importantly, intravenous infusion of CIK cells significantly delayed tumor growth in NOD/SCID mice, accompanied by a remarkable reduction in putative CSC number monitored by whole-body bioluminescence imaging. Taken together, our findings suggest that CIK cells demonstrate the intense tumor-killing activity against putative CSCs of NPC, at least in part, by NKG2D-ligands recognition. These results indicate that CIK cell-based therapeutic strategy against CSCs presents a promising and safe approach for cancer treatment.


Subject(s)
Cytokine-Induced Killer Cells/transplantation , Immunotherapy, Adoptive/methods , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Nasopharyngeal Neoplasms/pathology , Neoplastic Stem Cells/pathology , Animals , Blotting, Western , Carcinoma , Cell Separation , Flow Cytometry , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Inbred NOD , Mice, SCID , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Transduction, Genetic , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...