Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
ACS Nano ; 18(34): 22958-22964, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39136292

ABSTRACT

Artificial two-dimensional (2D) moiré superlattices provide a platform for generating exotic quantum matter or phenomena. Here, an epitaxial heterostructure composed of bilayer Bi(111) and an Fe3GeTe2 substrate with a zero-twist angle is acquired by molecular beam epitaxy. Scanning tunneling microscopy and spectroscopy studies reveal the spatially tailored Kondo resonance and interfacial magnetism within this moiré superlattice. Combined with first-principles calculations, it is found that the modulation effect of the moiré superlattice originates from the interfacial orbital hybridization between Bi and Fe atoms. Our work provides a tunable platform for strong electron correlation studies to explore 2D artificial heavy Fermion systems and interface magnetism.

2.
Nano Lett ; 24(36): 11246-11254, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39207036

ABSTRACT

Magnetic skyrmions are swirl-like spin configurations that present topological properties, which have great potential as information carriers for future high-density and low-energy-consumption devices. The optimization of skyrmion-hosting materials that can be integrated with semiconductor-based circuits is the primary challenge for their industrialization. Two-dimensional van der Waals ferromagnets are emerging materials that have excellent carrier mobility and compatibility with integrated circuits, making them an ideal candidate for spintronic devices. Here, we report the realization of skyrmions at above room temperature in the 2D ferromagnet Fe3GaTe2. The thickness tunability of their skyrmion size and the formation of the skyrmion lattice are revealed. Furthermore, we demonstrate that the skyrmions can be moved by a low-density current at room temperature, together with an apparent skyrmion Hall effect, which is consistent with our quantitative micromagnetic simulation. Our work offers a promising 2D material platform for harnessing magnetic skyrmions in practical device applications.

3.
J Phys Chem Lett ; 15(27): 6927-6934, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38935845

ABSTRACT

Two-dimensional materials with layered structures, appropriate band gaps, and high carrier mobility have attracted tremendous interest for their potential applications. Here we report the growth of monolayer SnP3 on Au(111) surfaces by molecular beam epitaxy. The kinetic processes for the growth and the crystalline properties are studied by scanning tunneling microscopy. The weak interaction between SnP3 and its Au(111) substrate is signified by the random crystal orientation distributions of SnP3 nanosheets. The electronic structures exhibit a band gap of ∼0.25 eV and high charge carrier mobility comparable to that of black phosphorus engineered by compressive strain. Additionally, domain boundary junctions with opposite chirality are observed, resulting from the strained film in the epitaxial growth process. Our work provides a method to fabricate high-quality monolayer SnP3 and suggests that the monolayer SnP3 is a promising candidate for applications in nanoelectronics and optoelectronics.

4.
J Phys Condens Matter ; 36(42)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38848730

ABSTRACT

In this article, we propose two methods for designing higher Chern number models from the topological defect perspective. Based on the fact that the Chern number is equal to a summation of the charges of meron defects, we show that the higher Chern number structures can be realized by either moving the positions of merons or increasing the amount of them. The combination of the two methods is also verified to be a viable approach. We shall construct several models and investigate their energy spectrum. More than one gapless state can be observed on the edges of these models. Expectedly, our theory promises to provide not only a simple approach to obtain the Chern number without computing any integrals, but also a practical technique for new material design.

5.
ACS Appl Mater Interfaces ; 16(3): 4181-4188, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194269

ABSTRACT

Precise control of charge carrier type and density of two-dimensional (2D) ambipolar semiconductors is the prerequisite for their applications in next-generation integrated circuits and electronic devices. Here, by fabricating a heterointerface between a 2D ambipolar semiconductor (hydrogenated germanene, GeH) and a ferroelectric substrate (PbMg1/3Nb2/3O3-PbTiO3, PMN-PT), fine-tuning of charge carrier type and density of GeH is achieved. Due to ambipolar properties, proper band gap, and high carrier mobility of GeH, by applying the opposite local bias (±8 V), a lateral polarization in GeH is constructed with a change of work function by 0.6 eV. Besides, the built-in polarization in GeH nanoflake could promote the separation of photoexcited electron-hole pairs, which lead to 4 times enhancement of the photoconductivity after poling by 200 V. In addition, a gradient regulation of the work function of GeH from 4.94 to 5.21 eV by adjusting the local substrate polarization is demonstrated, which could be used for data storage at the micrometer size by forming p-n homojunctions. This work of constructing such heterointerfaces provides a pathway for applying 2D ambipolar semiconductors in nonvolatile memory devices, photoelectronic devices, and next-generation integrated circuit.

6.
Small ; 20(23): e2311599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38214434

ABSTRACT

Zero thermal coefficients of resistivity (ZTCR) materials exhibit minimal changes in resistance with temperature variations, making them essential in modern advanced technologies. The current ZTCR materials, which are based on the resistivity saturation effect of heavy metals, tend to function at elevated temperatures because the mean free path approaches the lower limit of the semiclassical Boltzmann theory when the temperature is sufficiently high. ZTCR materials working at low-temperatures are difficult to achieve due to electron-phonon scattering, which results in increased resistivity according to Bloch's theory. In this work, the ZTCR behavior at low-temperatures is realized in pre-microstrained Mn3NiN. The delicate balance between the resistivity contribution from electron-phonon scattering and spin-wave mediated weak localization is well revealed. A remarkable temperature coefficient of resistivity (TCR) value as low as 1.9 ppm K-1 (50 K ≤ T ≤ 200 K) is obtained, which is significantly superior to the threshold value of ZTCR behavior and the application standard of commercial ZTCR materials. The demonstration provides a unique paradigm in the design of ZTCR materials through the contraction effects of two opposite conductance mechanisms with positive and negative thermal coefficients of resistivity.

7.
ACS Nano ; 18(5): 4343-4351, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38277336

ABSTRACT

The confinement of electrons in one-dimensional (1D) space highlights the prominence of the role of electron interactions or correlations, leading to a variety of fascinating physical phenomena. The quasi-1D electron states can exhibit a unique spin texture under spin-orbit interaction (SOI) and thus could generate a robust spin current by forbidden electron backscattering. Direct detection of such 1D spin or SOI information, however, is challenging due to complicated techniques. Here, we identify an anomalous planar Hall effect (APHE) in the magnetotransport of quasi-1D van der Waals (vdW) topological materials as exemplified by Bi4Br4, which arises from the quantum interference correction of 1D weak antilocalization (WAL) to the ordinary planar Hall effect and demonstrates a deviation from the usual sine and cosine curves. The occurrence of 1D WAL is correlated to the line-shape Fermi surface and persistent spin texture of (100) topological surface states of Bi4Br4, as revealed by both our angle-resolved photoemission spectroscopy and first-principles calculations. By generalizing the observation of APHE to other non-vdW bulk materials, this work provides a possible characteristic of magnetotransport for identifying the spin/SOI information and quantum interference behavior of 1D states in 3D topological material.

8.
Nat Commun ; 14(1): 7987, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042856

ABSTRACT

A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from -7.4 to -6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from -0.65 to -0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.

9.
Adv Sci (Weinh) ; : e2305139, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37949811

ABSTRACT

Photocatalysis and photoelectrocatalysis are promising ways in the utilization of solar energy. To address the low efficiency of photocatalysts and photoelectrodes, in-depth understanding of their catalytic mechanism is in urgent need. Recently, polaron is considered as an influential factor in catalysis, which brings researchers a new approach to modify photocatalysts and photoelectrodes. In this review, brief introduction of polaron is given first, followed by which models and recent experimentally observations of polarons are reviewed. Studies about roles of polarons in photocatalysis and photoelectrocatalysis are listed in order to provide some inspiration in exploring the mechanism and improving the efficiency of photocatalysis and photoelectrocatalysis.

10.
Adv Sci (Weinh) ; : e2303483, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37840399

ABSTRACT

Dispersionless flat bands (FBs) in momentum space, given rise to electron destructive interference in frustrated lattices, offer opportunities to enhance electronic correlations and host exotic many-body phenomena, such as Wigner crystal, fractional quantum hall state, and superconductivity. Despite successes in theory, great challenges remain in experimentally realizing FBs in frustrated lattices due to thermodynamically structural instability. Here, the observation of electronic FB in a potassium distorted colouring triangle (DCT) lattice is reported, which is supported on a blue phosphorene-gold network. It is verified that the interaction between potassium and the underlayer dominates and stabilizes the frustrated structures. Two-dimensional electron gas is modulated by the DCT lattice, and in turn results in a FB dispersion due to destructive quantum interferences. The FB exhibits suppressed bandwidth with high density of states, which is directly observed by scanning tunneling microscopy and confirmed by the first-principles calculation. This work demonstrates that DCT lattice is a promising platform to study FB physics and explore exotic phenomena of correlation and topological matters.

11.
J Colloid Interface Sci ; 651: 138-148, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37542889

ABSTRACT

Designing a semiconductor-based heterostructure photocatalyst is very important way to enhance the hydrogen production activity. Here, a novel 2D/2D CoAl-LDHs/ZnIn2S4 S-scheme heterostructure with an ultrathin structure was synthesized by electrostatic attraction between CoAl-LDHs and ZnIn2S4 nanosheets. The presence of oxygen vacancies in the monolayer CoAl-LDHs nanosheet promotes the formation of Co-SX bonds, which serve as charge transfer channels at the interface of the CoAl-LDHs/ZnIn2S4 heterostructure. The ultrathin CoAl-LDHs/ZnIn2S4 exhibits broadened light absorption in the near-infrared range due to the occurrence of Co-SX chemical bonds. The CoAl-LDHs/ZnIn2S4 with a mass ratio of 1:2 demonstrated the highest photocatalytic hydrogen evolution activity (1563.64 µmol g-1 h-1) under the simulated sunlight, which is 4.6 and 9.7 times than that of the ZnIn2S4 and CoAl-LDHs/ZnIn2S4(bulk), respectively. The enhanced photocatalytic activity of ultrathin 2D/2D CoAl-LDHs/ZnIn2S4 should attributed to the shorter carriers path that benefit from the ultrathin structure and the quicker photogenerated charge transfer and the S-scheme migration pathway accelerated by the charge channel of Co-SX bonds. These new ideas should be inspiring for the design and construction of heterostructures for higher photocatalytic hydrogen evolution activity.

12.
Nat Commun ; 14(1): 4964, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587124

ABSTRACT

Weak topological insulators, constructed by stacking quantum spin Hall insulators with weak interlayer coupling, offer promising quantum electronic applications through topologically non-trivial edge channels. However, the currently available weak topological insulators are stacks of the same quantum spin Hall layer with translational symmetry in the out-of-plane direction-leading to the absence of the channel degree of freedom for edge states. Here, we study a candidate weak topological insulator, Bi4Br2I2, which is alternately stacked by three different quantum spin Hall insulators, each with tunable topologically non-trivial edge states. Our angle-resolved photoemission spectroscopy and first-principles calculations show that an energy gap opens at the crossing points of different Dirac cones correlated with different layers due to the interlayer interaction. This is essential to achieve the tunability of topological edge states as controlled by varying the chemical potential. Our work offers a perspective for the construction of tunable quantized conductance devices for future spintronic applications.

13.
Adv Mater ; 35(41): e2301790, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37497878

ABSTRACT

Flat bands (FBs) can appear in two-dimensional (2D) geometrically frustrated systems caused by quantum destructive interference (QDI). However, the scarcity of pure 2D frustrated crystal structures in natural materials makes FBs hard to be identified, let alone modulate FBs relating to electronic properties. Here, the experimental evidence of the complete electronic QDI induced FB contributed by the 2D breathing-kagome layers of Nb atoms in Nb3 TeCl7 (NTC) is reported. An identical chemical state and 2D localization characteristics of the Nb breathing-kagome layers are experimentally confirmed, based on which NTC is demonstrated to be a superior concrete candidate for the breathing-kagome tight-binding model. Furthermore, it theoretically establishes the tunable roles of the on-site energy over Nb sites on bandwidth, energy position, and topology of FBs in NTC. This work opens an aveanue to manipulate FB characteristics in these 4d transition-metal-based breathing-kagome materials.

14.
Nat Commun ; 14(1): 4266, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37460538

ABSTRACT

Durability is one prerequisite for material application. Photoelectrochemical decomposition of seawater is a promising approach to produce clean hydrogen by using solar energy, but it always faces the problem of serious Cl- corrosion. We find that the main deactivation mechanism of the photoanode is oxide surface reconstruction accompanied by the coordination of Cl- during seawater splitting, and the stability of the photoanode can be effectively improved by enhancing the metal-oxygen interaction. Taking the metastable ß-Fe2O3 photoanode as an example, Sn added to the lattice can enhance the M-O bonding energy and hinder the transfer of protons to lattice oxygen, thereby inhibiting excessive surface hydration and Cl- coordination. Therefore, the bare Sn/ß-Fe2O3 photoanode delivers a record durability for photoelectrochemical seawater splitting over 3000 h.

15.
J Am Chem Soc ; 144(41): 18887-18895, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36194558

ABSTRACT

The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes. GeH possesses a superconducting transition with a critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa, while superconductivity remains. An abnormal increase of Tc up to 6.11 K was observed during the decompression process, while the GeH remained in the 2D amorphous phase. A combination study of in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, transition electron microscopy, and density functional theory simulations suggests that the superconductivity in 2D vdW GeH is attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure even in the form of an amorphous phase. The unique pressure-induced phase transition of GeH from 2D crystalline to 2D amorphous metal hydride provides a promising platform to study the mechanisms of amorphous hydride superconductivity.

16.
J Phys Condens Matter ; 34(48)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36218906

ABSTRACT

We consider the Haldane model, a two-band model in monolayer graphene with non-trivial Chern numbers. Two types of topological defects, monopoles and merons, are derived from the model: (a) the monopole defects occur at the Dirac points, where the system experiences a topological transition and the Chern numberCtakes an indeterminate value. The sign-change of the mass term after this transition indicates different topological states labeled by differentCnumbers; (b) the meron defects occur as per a varying mass term. Summing up the topological charges of the merons leads to theCevaluation for the energy bands of an insulating bulk, and the result we obtain is in full agreement to the past literature. Furthermore, in this paper we propose a high-Cmodel through studying the limitation behavior of the Hamiltonian vector in the neighborhood of the topological defects. It is discovered that two conducting states may arise form the edges, where the lower band of the insulating bulk carries a higher Chern number,C=±2.

17.
ACS Nano ; 16(2): 3036-3044, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35049268

ABSTRACT

Searching for quantum spin Hall insulators with large fully opened energy gap to overcome the thermal disturbance at room temperature has attracted tremendous attention because of the robustness of one-dimensional (1D) spin-momentum locked topological edge states in the practical applications of electronic devices and spintronics. Here, we report the investigation of topological nature of monolayer Bi4Br4 by the techniques of angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. The possible topological nontriviality of 1D edge state integrals within the large energy gap (∼0.2 eV) is revealed by the first-principle calculations. The ARPES measurements at different temperatures show a temperature-induced Lifshitz transition, corresponding to the resistivity anomaly evoked by the chemical potential shift. The connection between the emergency of superconductivity and the Lifshitz transition is discussed.

18.
J Phys Condens Matter ; 34(7)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34757949

ABSTRACT

Heterostructures of two-dimensional (2D) layered materials with selective compositions play an important role in creating novel functionalities. Effective interface coupling between 2D ferromagnet and electronic materials would enable the generation of exotic physical phenomena caused by intrinsic symmetry breaking and proximity effect at interfaces. Here, epitaxial growth of bilayer Bi(110) on 2D ferromagnetic Fe3GeTe2(FGT) with large magnetic anisotropy has been reported. Bilayer Bi(110) islands are found to extend along fixed lattice directions of FGT. The six preferred orientations could be divided into two groups of three-fold symmetry axes with the difference approximately to 26°. Moreover, dI/dVmeasurements confirm the existence of interface coupling between bilayer Bi(110) and FGT. A variation of the energy gap at the edges of bilayer Bi(110) is also observed which is modulated by the interface coupling strengths associated with its buckled atomic structure. This system provides a good platform for further study of the exotic electronic properties of epitaxial Bi(110) on 2D ferromagnetic substrate and promotes potential applications in the field of spin devices.

19.
ACS Nano ; 15(11): 18419-18428, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34704750

ABSTRACT

Potassium-ion batteries (KIBs) are considered as low-cost electrochemical energy storage technologies because of the abundant potassium resources. However, the practical applications of KIBs are mainly hampered by the unsatisfactory electrochemical performance of anode materials which often undergo large volume variations during potassiation-depotassiation, limiting their cycling life. Here, low-cost sulfurized polyacrylonitrile (S-PAN) is reported as an attractive anode candidate for KIBs. It provides a high potassium storage capacity of 569 mAh g(S-PAN)-1 with decent rate capability and cycling stability (no capacity loss after 1500 cycles, running time ∼188 days). Detailed ex situ spectroscopic and in situ microscopic characterizations reveal that the distinguished electrochemical performance of S-PAN is attributed to the high reversibility of its covalent C-S and S-S bonds which undergo repeated cleavage-redimerization during potassiation-depotassiation concomitant with relatively small volume variation (less than 24.2%). Subsequently, a full-cell constructed by pairing high-voltage K2MnFe(CN)6 cathode with high-capacity S-PAN anode demonstrates an attractive energy density (290.9 Wh kg-1) and long-term cycling stability (1200 cycles with 95.4% capacity retention). Given the high performance and low cost of both anode and cathode materials, it is believed that the present full-cell promises it as a competitive energy storage system for the cost-sensitive grid-scale applications.

20.
Nano Lett ; 21(21): 9233-9239, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34709835

ABSTRACT

Understanding quantum tunneling principles over two-dimensional (2D) van der Waals (vdW) ferromagnets at the atomic level is essential and complementary to the fundamental study of low-dimensional strong correlated systems and is critical for the development of magnetic tunneling devices. Here, we demonstrate a local electric-field controlled negative differential conductance (NDC) in 2D vdW ferromagnet Fe3GeTe2 (FGT) by using scanning tunneling microscopy (STM). The STM reveals that NDC shows an atomic position dependence and can be precisely modulated by altering the tunneling junction. The band shift together with electric-field-driven 3d-orbital occupancy modulates the sensitive magnetic anisotropic energy (MAE) in 2D FGT and consequently leads to electric-field-tunable NDC, which is also verified by theoretical simulation. This work realizes the electric-field-driven NDC in 2D ferromagnet FGT, which paves a way to design and develop applications based on 2D vdW magnets.

SELECTION OF CITATIONS
SEARCH DETAIL