Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
2.
Plant J ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703081

ABSTRACT

A fundamental question in developmental biology is how to regulate grain size to improve crop yields. Despite this, little is still known about the genetics and molecular mechanisms regulating grain size in crops. Here, we provide evidence that a putative protein kinase-like (OsLCD3) interacts with the S-adenosyl-L-methionine synthetase 1 (OsSAMS1) and determines the size and weight of grains. OsLCD3 mutation (lcd3) significantly increased grain size and weight by promoting cell expansion in spikelet hull, whereas its overexpression caused negative effects, suggesting that grain size was negatively regulated by OsLCD3. Importantly, lcd3 and OsSAMS1 overexpression (SAM1OE) led to large and heavy grains, with increased ethylene and decreased polyamines production. Based on genetic analyses, it appears that OsLCD3 and OsSAMS1 control rice grain size in part by ethylene/polyamine homeostasis. The results of this study provide a genetic and molecular understanding of how the OsLCD3-OsSAMS1 regulatory module regulates grain size, suggesting that ethylene/polyamine homeostasis is an appropriate target for improving grain size and weight.

3.
Sci Data ; 11(1): 394, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632296

ABSTRACT

Understanding elevation changes on the Tibetan Plateau is crucial to comprehend the changes in topography, landscape, climate, environmental conditions, and water resources. However, some of the current products that track elevation changes only cover specific surface types or limited areas, and others have low spatial resolution. We propose an algorithm to extract ICESat-2 crossover points dataset for the Tibetan Plateau, and form a dataset. The crossover points dataset has a density of 2.015 groups/km², and each group of crossover points indicates the amount of change in elevation before and after a period of time over an area of approximately 17 meters in diameter. Comparing ICESat-2 crossover points data with existing studies on glaciers and lakes, we demonstrated the reliability of the derived elevation changes. The ICESat-2 crossover points provide a refined data source for understanding high-spatial-resolution elevation changes on the Tibetan Plateau. This dataset can provide validation data for various studies that require high-precision or high-resolution elevation change data on the Tibetan Plateau.

4.
J Med Virol ; 95(10): e29136, 2023 10.
Article in English | MEDLINE | ID: mdl-37804496

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron harbors more than 30 mutations of the spike protein and exhibits substantial immune evasion. Although previous study indicated that BNT162b2 messenger RNA vaccine induces potent cross-clade pan-sarbecovirus neutralizing antibodies in survivors of the infection by SARS-CoV-1, the neutralization activity and Fc-mediated effector functions of these cross-reactive antibodies elicited in SARS-CoV-1 survivors to Omicron subvariants still remain largely unknown. In this study, the neutralization activity and Fc-mediated effector functions of antibodies boosted by a third dose vaccination were characterized in SARS-CoV-1 convalescents and healthy individuals. Potent cross-clade broadly neutralizing antibodies were observed in SARS-CoV-1 survivors who received a three-dose vaccination regimen consisting of two priming doses of CoronaVac followed by one booster dose of the protein subunit vaccine ZF2001. However, the induced antibodies exhibited both reduced neutralization and impaired Fc effector functions targeting multiple Omicron subvariants. Importantly, the data also support the notion that immune imprints resulted from SARS-CoV-1 infection may exacerbate the impairment of neutralization activity and Fc-mediated effector functions to Omicron subvariants and provided invaluable information to vaccination strategy in future.


Subject(s)
BNT162 Vaccine , Severe acute respiratory syndrome-related coronavirus , Humans , Vaccines, Subunit , SARS-CoV-2 , Survivors , Antibodies, Neutralizing , Antibodies, Viral
5.
Yi Chuan ; 45(9): 845-855, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37731238

ABSTRACT

Gibberellin (GA) is an important hormone, which is involved in regulating various growth and development. GA biosynthesis pathway and synthetase have been basically clarified. Gibberellin 3ß hydroxylase (GA3ox) is the key enzyme for the synthesis of various active GA. There are two GA3ox genes (OsGA3ox1 and OsGA3ox2) in rice, and their physiological functions have been preliminarily studied. However, it is not clear how they work together to synthesize active GA to regulate rice development. In this study, the knockout mutants ga3ox1 and ga3ox2 were obtained by CRISPR/Cas9 technology. The pollen fertility of ga3ox1 decreased significantly, while the plant height of ga3ox2 decreased significantly. It shows that OsGA3ox1 is necessary for normal pollen development, while OsGA3ox2 is necessary for stem and leaf elongation. Tissue expression analysis showed that OsGA3ox1 was mainly expressed in unopened flowers, while OsGA3ox2 was mainly expressed in unexpanded leaves. The GA in different tissues of wild type (WT), and two ga3ox mutants were detected. It was found that pollen fertility is most closely related to the content of GA7, and plant height is most closely related to the content of GA1. It was found that OsGA3ox1 catalyzes GA9 to GA7 in flowers, which is closely related to pollen fertility; OsGA3ox2 catalyzes the GA20 to GA1 in unexpanded leaves, thereby regulating plant height; OsGA3ox1 catalyzes the GA19 to GA20 in roots, regulating the generation of GA3. OsGA3ox1 and OsGA3ox2 respond to developmental and environmental signals, and cooperate to synthesize endogenous GA in different tissues to regulate rice development. This study provides a reference for clarifying its role in GA biosynthesis pathway and further understanding the function of OsGA3ox.


Subject(s)
Oryza , Oryza/genetics , Gibberellins , Pollen , Fertility/genetics , Flowers/genetics
6.
Nat Commun ; 14(1): 6072, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770474

ABSTRACT

Leaf rust, caused by Puccinia triticina Eriksson (Pt), is one of the most severe foliar diseases of wheat. Breeding for leaf rust resistance is a practical and sustainable method to control this devastating disease. Here, we report the identification of Lr47, a broadly effective leaf rust resistance gene introgressed into wheat from Aegilops speltoides. Lr47 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that is both necessary and sufficient to confer Pt resistance, as demonstrated by loss-of-function mutations and transgenic complementation. Lr47 introgression lines with no or reduced linkage drag are generated using the Pairing homoeologous1 mutation, and a diagnostic molecular marker for Lr47 is developed. The coiled-coil domain of the Lr47 protein is unable to induce cell death, nor does it have self-protein interaction. The cloning of Lr47 expands the number of leaf rust resistance genes that can be incorporated into multigene transgenic cassettes to control this devastating disease.


Subject(s)
Aegilops , Basidiomycota , Aegilops/genetics , Plant Breeding , Triticum/genetics , Basidiomycota/genetics , Cloning, Molecular , Plant Diseases/genetics , Disease Resistance/genetics
7.
Environ Sci Technol ; 57(24): 9018-9031, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37285475

ABSTRACT

Using a hemispherical directional reflectance factor instrument, spectral data of dirty snow containing black carbon (BC), mineral dust (MD), and ash was collected from multiple locations to investigate the impact of these light-absorbing impurities (LAIs) on snow reflectance characteristics. The findings revealed that the perturbation of snow reflectance caused by LAIs is characterized by nonlinear deceleration, indicating that the reduction in snow reflectance per unit ppm of LAIs declines as snow contamination increases. The reduction in snow reflectance caused by BC may reach saturation at elevated particle concentrations (thousands of ppm) on snow. Snowpacks loaded with MD or ash initially exhibit a significant reduction in spectral slope around 600 and 700 nm. The deposition of numerous MD or ash particles can increase snow reflectance beyond the wavelength of 1400 nm, with an increase of 0.1 for MD and 0.2 for ash. BC can darken the entire measurement range (350-2500 nm), while MD and ash can only affect up to 1200 nm (350-1200 nm). This study enhances our understanding of the multi-angle reflection characteristics of various dirty snow, which can guide future snow albedo simulations and improve the accuracy of LAIs' remote sensing retrieval algorithms.


Subject(s)
Environmental Monitoring , Snow , Dust/analysis , Sunlight , Soot/analysis , Carbon
8.
Plant Sci ; 334: 111767, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37302530

ABSTRACT

S-adenosylmethionine synthase is the key enzyme involved in the biosynthesis of S-adenosylmethionine, which serves as the universal methyl group donor and a common precursor for the biosynthesis of ethylene and polyamines. However, little is known about how SAMS controls plant development. Here, we report that the abnormal floral organ development in the AtSAMS-overexpressing plants is caused by DNA demethylation and ethylene signaling. The whole-genome DNA methylation level decreased, and ethylene content increased in SAMOE. Wild-type plants treated with DNA methylation inhibitor mimicked the phenotypes and the ethylene levels in SAMOE, suggesting that DNA demethylation enhanced ethylene biosynthesis, which led to abnormal floral organ development. DNA demethylation and elevated ethylene resulted in changes in the expression of ABCE genes, which is essential for floral organ development. Furthermore, the transcript levels of ACE genes were highly correlated to their methylation levels, except for the down-regulation of the B gene, which might have resulted from demethylation-independent ethylene signaling. SAMS-mediated methylation and ethylene signaling might create crosstalk in the process of floral organ development. Together, we provide evidence that AtSAMS regulates floral organ development by DNA methylation and ethylene signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Growth Regulators/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA Methylation , S-Adenosylmethionine/metabolism , Flowers , Ethylenes/metabolism , Signal Transduction/physiology , Gene Expression Regulation, Plant
9.
Antimicrob Agents Chemother ; 67(5): e0121922, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37133453

ABSTRACT

ACC007 is a new-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) with favorable pharmacokinetic and safety profiles. NNRTIs are typically administered in combination with two nucleoside reverse transcriptase inhibitors as first-line recommended regimens in several guidelines. Therefore, this open-label, randomized, single-period, parallel-cohort study aimed to assess the drug-drug interactions (DDIs) and safety profiles of ACC007 in combination with tenofovir disoproxil fumarate (TDF) and lamivudine (3TC) in healthy subjects. All 24 screened subjects were randomly assigned to group A or B. On days 1 to 17, 3TC at 300 mg and TDF at 300 mg were taken orally by group A, and ACC007 at 300 mg was coadministered on days 8 to 17. On days 1 to 17, 300 mg of ACC007 was taken orally by group B, and 300 mg 3TC and 300 mg TDF were coadministered on days 8 to 17. When we compared 3TC-TDF versus 3TC-TDF-ACC007 DDIs, the geometric mean ratios (GMRs, with 90% confidence intervals [CIs] in parentheses) of the maximum concentration at steady state (Cmax,ss) and area under the concentration-time curve from 0 h to infinity (i.e., at steady state; AUCss) values for TDF were 108.14% (95.68 to 122.22%) and 89.90% (82.67 to 97.76%) (P = 0.344); for 3TC, these values were 113.48% (91.45 to 140.82%) and 95.33% (83.61 to 108.7%) (P = 0.629). When ACC007 alone was compared to the combination 3TC-TDF-ACC007, the GMRs (90% CIs) of the Cmax,ss and AUCss values for ACC007 were 89.00% (76.35 to 103.74%) and 82.57% (73.27 to 93.05%) (P = 0.375). The coadministration of 3TC-TDF-ACC007 did not significantly affect the time to maximum concentration of any of the drugs in terms of P values. ACC007 combined with 3TC-TDF was generally well tolerated during daily dosing for 17 days with no serious adverse events. Overall, ACC007 and 3TC-TDF had no significant or meaningful interactions and a favorable safety profile, which supports the use of the combination regimen.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Tenofovir/adverse effects , Lamivudine/adverse effects , Anti-HIV Agents/adverse effects , Cohort Studies , HIV Infections/drug therapy , Drug Interactions
10.
Clin Pharmacol Drug Dev ; 12(4): 350-355, 2023 04.
Article in English | MEDLINE | ID: mdl-36718548

ABSTRACT

Dienogest is effective in reducing endometriosis-related pain symptoms. This study aims to investigate and compare the pharmacokinetic profiles and safety of test formulations to reference formulations of dienogest in healthy Chinese female volunteers under fasting or fed conditions. The purpose of this single-center, randomized, open-label, 2-sequence, 2-period crossover clinical trial was to evaluate the safety and pharmacokinetic profiles of the 2 formulations under fasting and fed conditions. Additionally, 48 healthy female volunteers were selected and divided at random into the fasting and the fed group. After dosing, the venous blood was collected through indwelling catheters. Dienogest plasma concentrations were measured using liquid chromatography-tandem mass spectrometry after the plasma samples were prepared with the protein precipitation method. Under either fasting or fed conditions, the pharmacokinetic parameters (maximum observed concentration, area under the concentration-time curve [AUC] from time 0 to the last measurable concentration, and AUC from time 0 to infinity) for dienogest between the test and reference products, geometric mean ratio, and 90%CI were all within the range of 80%-125%. The 2 dienogest products were bioequivalent. Based on maximum observed concentration and AUC from time 0 to the last measurable concentration, the generic dienogest was bioequivalent to the original dienogest in this study conducted under fasting and fed conditions in healthy Chinese women (study CTR20190063 on chinadrugtrials.org.cn registry).


Subject(s)
Fasting , Humans , Female , Therapeutic Equivalency , Healthy Volunteers , Area Under Curve
11.
J Clin Transl Hepatol ; 11(1): 1-14, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36406310

ABSTRACT

Background and Aims: Collagen ß(1-O) galactosyltransferase 25 domain 1 (GLT25D1) is associated with collagen production and glycosylation, and its knockout in mice results in embryonic death. However, its role in liver fibrosis remains elusive, particularly in hepatic stellate cells (HSCs), the primary collagen-producing cells associated with liver fibrogenesis. Herein, we aimed to elucidate the role of GLT25D1 in HSCs. Methods: Bile duct ligation (BDL)-induced mouse liver fibrosis models, primary mouse HSCs (mHSCs), and transforming growth factor beta 1 (TGF-ß1)-stimulated LX-2 human hepatic stellate cells were used in in vivo and in vitro studies. Stable LX-2 cell lines with either GLT25D1 overexpression or knockdown were established using lentiviral transfection. RNA-seq was performed to investigate the genomic differences. HPLC-MS/MS were used to identify glycosylation sites. Scanning electronic microscopy (SEM) and second-harmonic generation/two-photon excited fluorescence (SHG/TPEF) were used to image collagen fibril morphology. Results: GLT25D1 expression was upregulated in nonparenchymal cells in human cirrhotic liver tissues. Meanwhile, its knockdown attenuated collagen deposition in BDL-induced mouse liver fibrosis and inhibited mHSC activation. GLT25D1 was overexpressed in activated versus quiescence LX-2 cells and regulated in vitro LX-2 cell activation, including proliferation, contraction, and migration. GLT25D1 also significantly increased liver fibrogenic gene and protein expression. GLT25D1 upregulation promoted HSC activation and enhanced collagen expression through the TGF-ß1/SMAD signaling pathway. Mass spectrometry showed that GLT25D1 regulated the glycosylation of collagen in HSCs, affecting the diameter of collagen fibers. Conclusions: Collectively, the upregulation of GLT25D1 in HSCs promoted the progression of liver fibrosis by affecting HSCs activation and collagen stability.

12.
Nature ; 614(7948): 521-529, 2023 02.
Article in English | MEDLINE | ID: mdl-36535326

ABSTRACT

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Evolution, Molecular , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Breakthrough Infections/immunology , Breakthrough Infections/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Serotherapy , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Protein Domains/genetics , Protein Domains/immunology , Antigenic Drift and Shift/immunology , Mutation
13.
Cell Rep ; 41(12): 111845, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36493787

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages have escaped most receptor-binding domain (RBD)-targeting therapeutic neutralizing antibodies (NAbs), which proves that previous NAb drug screening strategies are deficient against the fast-evolving SARS-CoV-2. Better broad NAb drug candidate selection methods are needed. Here, we describe a rational approach for identifying RBD-targeting broad SARS-CoV-2 NAb cocktails. Based on high-throughput epitope determination, we propose that broad NAb drugs should target non-immunodominant RBD epitopes to avoid herd-immunity-directed escape mutations. Also, their interacting antigen residues should focus on sarbecovirus conserved sites and associate with critical viral functions, making the antibody-escaping mutations less likely to appear. Following these criteria, a featured non-competing antibody cocktail, SA55+SA58, is identified from a large collection of broad sarbecovirus NAbs isolated from SARS-CoV-2-vaccinated SARS convalescents. SA55+SA58 potently neutralizes ACE2-utilizing sarbecoviruses, including circulating Omicron variants, and could serve as broad SARS-CoV-2 prophylactics to offer long-term protection, especially for individuals who are immunocompromised or with high-risk comorbidities.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2 , Broadly Neutralizing Antibodies , Combined Antibody Therapeutics , Antibodies, Neutralizing , Epitopes , Antibodies, Viral
15.
Cell Host Microbe ; 30(11): 1527-1539.e5, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36270286

ABSTRACT

Recently emerged SARS-CoV-2 Omicron subvariant, BA.2.75, displayed a growth advantage over circulating BA.2.38, BA.2.76, and BA.5 in India. However, the underlying mechanisms for enhanced infectivity, especially compared with BA.5, remain unclear. Here, we show that BA.2.75 exhibits substantially higher affinity for host receptor angiotensin-converting enzyme 2 (ACE2) than BA.5 and other variants. Structural analyses of BA.2.75 spike shows its decreased thermostability and increased frequency of the receptor binding domain (RBD) in the "up" conformation under acidic conditions, suggesting enhanced low-pH-endosomal cell entry. Relative to BA.4/BA.5, BA.2.75 exhibits reduced evasion of humoral immunity from BA.1/BA.2 breakthrough-infection convalescent plasma but greater evasion of Delta breakthrough-infection convalescent plasma. BA.5 breakthrough-infection plasma also exhibits weaker neutralization against BA.2.75 than BA.5, mainly due to BA.2.75's distinct neutralizing antibody (NAb) escape pattern. Antibody therapeutics Evusheld and Bebtelovimab remain effective against BA.2.75. These results suggest BA.2.75 may prevail after BA.4/BA.5, and its increased receptor-binding capability could support further immune-evasive mutations.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Serotherapy
17.
Front Pharmacol ; 13: 983505, 2022.
Article in English | MEDLINE | ID: mdl-36147329

ABSTRACT

Background: BRII-196 and BRII-198 are two anti-SARS-CoV-2 monoclonal neutralizing antibodies as a cocktail therapy for treating COVID-19 with a modified Fc region that extends half-life. Methods: Safety, tolerability, pharmacokinetics, and immunogenicity of BRII-196 and BRII-198 were investigated in first-in-human, placebo-controlled, single ascending dose phase 1 studies in healthy adults. 44 participants received a single intravenous infusion of single BRII-196 or BRII-198 up to 3,000 mg, or BRII-196 and BRII-198 combination up to 1500/1500 mg, or placebo and were followed up for 180 days. Primary endpoints were incidence of adverse events (AEs) and changes from pre-dose baseline in clinical assessments. Secondary endpoints included pharmacokinetics profiles of BRII-196/BRII-198 and detection of anti-drug antibodies (ADAs). Plasma neutralization activities against SARS-CoV-2 Delta live virus in comparison to post-vaccination plasma were evaluated as exploratory endpoints. Results: All infusions were well-tolerated without systemic or local infusion reactions, dose-limiting AEs, serious AEs, or deaths. Most treatment-emergent AEs were isolated asymptomatic laboratory abnormalities of grade 1-2 in severity. BRII-196 and BRII-198 displayed pharmacokinetics characteristic of Fc-engineered human IgG1 with mean terminal half-lives of 44.6-48.6 days and 72.2-83.0 days, respectively, with no evidence of interaction or significant anti-drug antibody development. Neutralizing activities against the live virus of the SARS-CoV-2 Delta variant were maintained in plasma samples taken on day 180 post-infusion. Conclusion: BRII-196 and BRII-198 are safe, well-tolerated, and suitable therapeutic or prophylactic options for SARS-CoV-2 infection. Clinical Trial Registration: ClinicalTrials.gov under identifiers NCT04479631, NCT04479644, and NCT04691180.

18.
Nature ; 608(7923): 593-602, 2022 08.
Article in English | MEDLINE | ID: mdl-35714668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Epitopes, B-Lymphocyte , Immune Tolerance , Mutation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
19.
Nature ; 602(7898): 657-663, 2022 02.
Article in English | MEDLINE | ID: mdl-35016194

ABSTRACT

The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A-F)-a grouping that is highly concordant with knowledge-based structural classifications3-5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A-D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/classification , Antibodies, Viral/classification , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cells, Cultured , Convalescence , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Humans , Immune Sera/immunology , Models, Molecular , Mutation , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...