Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(42): 39847-39854, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901483

ABSTRACT

The three-phase coexistence line of the CO2 hydrate was determined using molecular dynamics (MD) simulations. By using the classical and modified Lorentz-Berthelot (LB) parameters, the simulations were carried out at 10 different pressures from 3 to 500 MPa. For the OPC water model, simulations with the classic and the modified LB parameters both showed negative deviations from the experimental values. For the TIP4P/Ice water model, good agreement with experimental equilibrium data can be achieved when the LB parameter is adjusted based on the solubility of CO2 in water. Our results also show that the influence of the water model on the equilibrium prediction is much larger than the CO2 model. Current simulations indicated that the H2O-H2O and H2O-CO2 cross-interactions' parameters might contribute equally to the accurate prediction of T3. According to our simulations, the prediction of T3 values showed relatively higher accuracy while using the combination of TIP4P/Ice water and EPM2 CO2 with modified LB parameter. Furthermore, varied χ values are recommended for accurate T3 estimation over a wide pressure range. The knowledge obtained in this study will be helpful for further accurate MD simulation of the process of CO2/CH4 replacement.

2.
J Chem Phys ; 157(1): 014504, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35803825

ABSTRACT

Molecular dynamics (MD) simulations were performed to determine the three-phase coexistence line of sI methane hydrates. The MD simulations were carried out at four different pressures (4, 10, 40, and 100 MPa) by using the direct phase coexistence method. In current simulations, water was described by either TIP4P/Ice or "optimal" point charge (OPC) models and methane was described as a simple Lennard-Jones interaction site. Lorentz-Berthelot (LB) combining rules were used to calculate the parameters of the cross interactions. For the OPC model, positive deviations from the energetic LB rule were also considered based on the solubility of methane in water. For the TIP4P/Ice water model, the obtained three phase coexistence temperatures showed good agreement with experiment data at higher pressures, which is consistent with previous predictions. For the OPC water model, simulations using the classic and the modified LB parameters both showed negative deviations to the experimental values. Our results also indicated that the deviation of the T3 prediction by the OPC model was not closely correlated with the predicted melting point of ice. At 4 MPa, the modified OPC model showed a better prediction of hydrate equilibrium temperature, even better than the prediction by TIP4P/Ice. Considering the relatively higher accuracy in biomolecular MD of the OPC model, it is suggested that this model may have a better performance in hydrate MD simulations of biomolecule-based additives.


Subject(s)
Methane , Water , Molecular Dynamics Simulation , Pressure , Temperature
3.
Sci Bull (Beijing) ; 65(11): 958-964, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-36747429

ABSTRACT

Supercritical CO2 appearing as bubbles in hydrothermal vents was identified in the south part of the Okinawa Trough using in situ Raman spectroscopy. Significantly, the N2 peak in supercritical CO2 is much larger than those in seawater and vent fluids, indicating that supercritical CO2 enriches N2 from the surrounding environment. Considering that the partial pressures of CO2 and N2 in the Earth's proto-atmosphere were ~10-20 MPa, supercritical CO2 with high N2 was likely the dominant CO2 phase near the water-air interface in the early history of the Earth, which promoted the synthesis, pre-enrichment and preservation of amino acids and other organic matters that are essential to the origin of life.

4.
Microsc Res Tech ; 81(5): 486-493, 2018 May.
Article in English | MEDLINE | ID: mdl-29430815

ABSTRACT

"Nanhai I" shipwreck of China Southern Song Dynasty is the oldest and the most integrally preserved shipwreck in the world. The related conservation and archeological research have caught great attention of different experts all over the world. In this study, different types of concretion covered on the surface of the ceramics in "Nanhai I" shipwreck were analyzed by X-ray diffractometer, micro-Raman spectrometer, and scanning electron microscope equipped with energy dispersive spectroscopy. Based on the analyses, we found that the grey concretion was mainly composed of quartz, aragonite, and calcite while the reddish concretion was mainly composed of pyrite and quartz. Our study indicated that the formation process of the grey concretion probably included the crystallization and transformation of aragonite, while the corrosion of iron implements and crystallization of pyrite were highly involved in the formation of reddish concretion.

SELECTION OF CITATIONS
SEARCH DETAIL
...