Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Chin J Nat Med ; 22(3): 273-279, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553194

ABSTRACT

Hyparillums A (1) and B (2), two previously unidentified polycyclic polyprenylated acylphloroglucinols (PPAPs) with intricate architectures, were isolated from Hypericum patulum Thunb. Hyparillum A was the first PPAP with eight-carbon rings based on an unprecedented 6/6/5/6/6/5/6/4 octocyclic system featuring a rare heptacyclo[10.8.1.11,10.03,8.08,21.012,19.014,17]docosane core. In contrast, hyparillum B featured a novel heptacyclic architecture (6/6/5/6/6/5/5) based on a hexacyclo[9.6.1.11,9.03,7.07,18.011,16]nonadecane motif. Furthermore, hyparillums A and B demonstrated promising inhibitory effects on the proliferation of murine splenocytes stimulated by anti-CD3/anti-CD28 monoclonal antibodies and lipopolysaccharide, exhibiting half-maximal inhibitory concentration (IC50) values ranging from 6.13 ± 0.86 to 12.69 ± 1.31 µmol·L-1.


Subject(s)
Hypericum , Mice , Animals , Molecular Structure , Phloroglucinol/pharmacology
2.
Front Pharmacol ; 15: 1349032, 2024.
Article in English | MEDLINE | ID: mdl-38549672

ABSTRACT

In China, Russia, Mongolia, Japan, North Korea, and Mexico, Sedum aizoon L. (S. aizoon) is used as an edible plant. Up to now, over 234 metabolites, including phenolic acids, flavonoids, triterpenes, phytosterols, and alkaloids, among others, have been identified. In addition to its antioxidant, anti-inflammatory, anti-fatigue, antimicrobial, anti-cancer, and hemostatic activities, S. aizoon is used for the treatment of cardiovascular disease. This paper provides an overview of the history, botany, nutritional value, traditional use, phytochemistry, pharmacology, toxicology, and quality control of S. aizoon.

3.
J Agric Food Chem ; 71(46): 17801-17809, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37944165

ABSTRACT

Autoimmune hepatitis is a serious hepatic disorder with unknown nosogenesis, and natural products have been deemed to be one of the most significant sources of new drugs against this disease. Prenyllongnols A-D (1-4), four undescribed prenylated acylphloroglucinols, were isolated from Hypericum longistylum. Compounds 1-4 exhibited remarkable immunosuppressive activities in murine splenocyte proliferation under the induction of concanavalin A (Con A), and IC50 values ranged from 2.98 ± 0.21 to 6.34 ± 0.72 µM. Furthermore, in a Con A-challenged autoimmune hepatitis mouse model, the mice in the group that were pretreated with isolate 2 significantly ameliorated liver injury and decreased proinflammatory cytokine production. Notably, natural product 2 was the first prenylated acylphloroglucinol to protect against concanavalin A-induced autoimmune hepatitis. This finding underscores the potential of prenylated acylphloroglucinol-type metabolites as promising candidates for designing novel immunosuppressors in the quest for new antiautoimmune hepatitis drugs.


Subject(s)
Hepatitis, Autoimmune , Hypericum , Animals , Mice , Concanavalin A , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/etiology , Phloroglucinol/pharmacology , Immunosuppressive Agents
4.
J Nat Prod ; 86(6): 1385-1391, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37294628

ABSTRACT

Spectasterols A-E (1-5), aromatic ergosterols with unique ring systems, were isolated from Aspergillus spectabilis. Compounds 1 and 2 possess a 6/6/6/5/5 ring system with an additional cyclopentene, while 3 and 4 have an uncommon 6/6/6/6 ring system generated by the D-ring expansion via 1,2-alkyl shifts. Compound 3 exhibited cytotoxic activity (IC50 6.9 µM) and induced cell cycle arrest and apoptosis in HL60 cells. Compound 3 was anti-inflammatory; it decreased COX-2 levels at the transcription and protein levels and inhibited the nuclear translocation of NF-κB p65.


Subject(s)
Aspergillus , NF-kappa B , Humans , NF-kappa B/metabolism , Aspergillus/metabolism , Anti-Inflammatory Agents/pharmacology , Apoptosis , Ergosterol/pharmacology
5.
Front Pharmacol ; 14: 1074837, 2023.
Article in English | MEDLINE | ID: mdl-37089931

ABSTRACT

Objective: To investigate the effects of Linggui Zhugan Decoction on mitochondrial and oxidative damage in rats with chronic heart failure after myocardial infarction and the related mechanisms. Methods: Chronic heart failure after myocardial infarction was established by coronary artery ligation. Heart failure rats were randomly divided into three groups: Model group (n = 11), Linggui Zhugan Decoction group (n = 12), and captopril group (n = 11). Rats whose coronary arteries were only threaded and not ligated were sham group (n = 11). Cardiac function, superoxide dismutase (SOD), malondialdehyde (MDA) contents, soluble growth-stimulating expression factor (ST2), and N-terminal B-type brain natriuretic peptide precursor (NTproBNP) levels were analyzed after treatment. Moreover, the level of mitochondrial membrane potential was detected by JC-1 staining, the ultrastructural of myocardial mitochondria were observed by transmission electron microscopy. The related signal pathway of silent information regulator factor 2-related enzyme 1 (SIRT1), adenylate activated protein kinase (AMPK), phosphorylated adenylate activated protein kinase (p-AMPK), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is an important pathway to regulate mitochondrial energy metabolism, and to initiate mitochondrial biogenesis. The expression level was detected by Western blot and reverse transcription to explore the mechanism of the decoction. Results: Compared with the model rats, Linggui Zhugan Decoction significantly improved cardiac function (p < 0.05), reduced MDA production (p < 0.01), increased SOD activity (p < 0.05), reduced ST-2(p < 0.01), and NT-proBNP(p < 0.05) levels, increased mitochondrial membrane potential, and improved mitochondria function. In addition, Linggui Zhugan Decoction upregulated the expression of SIRT1, p-AMPK, PGC-1α protein, and mRNA in cardiac myocytes. Conclusion: Linggui Zhugan Decoction can improve the cardiac function of heart failure rats by enhancing myocardial antioxidant capacity and protecting the mitochondrial function, the mechanism is related to activating SIRT1/AMPK/PGC-1α signaling pathway.

6.
Nat Prod Res ; 36(14): 3603-3609, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33487054

ABSTRACT

Two novel cytochalasans, armochaetoglasin J (1) and armochaetoglasin K (2), along with 14 known analogues (3-16) were isolated from Chaetomium globosum. Their structures were elucidated by HRESIMS, NMR spectroscopy, single-crystal X-ray crystallography, and ECD spectra. Armochaetoglasins J and K were found to be inactive against the HepG2, HT-29, K562, HL-60, and A549 cancer cell lines.


Subject(s)
Chaetomium , Chaetomium/chemistry , Crystallography, X-Ray , Cytochalasins/chemistry , HL-60 Cells , Humans
7.
Front Pharmacol ; 12: 573909, 2021.
Article in English | MEDLINE | ID: mdl-33935691

ABSTRACT

Trans-resveratrol (RES) exhibits a wide range of biological activities. Various methodological approaches have been established to improve the pharmacokinetic properties of RES. Moreover, additional in vivo studies are required to support clinical application. In this study, RES/HP-ß-CD (RHSD) inclusion complex was prepared and characterized by FTIR, PXRD, DSC and NMR data. The effect and potential mechanism of RHSD against cervical cancer were investigated in a mouse xenograft tumor model by qPCR assay, Western blot assay, and immunohistochemical assay. Results showed that RHSD significantly decreased tumor growth compared with free RES, while the effect of preventing tumor growth was more prominent in vivo. Notably, RHSD could inhibit tumor development by suppressing the expression of HPV E6 and E7 oncogenes and upregulating P53 and Rb1 protein in cervical cancer. These findings demonstrated that RHSD was safe and potential for development of a new oral administration drug to treat cervical cancer.

8.
Sci Rep ; 11(1): 9251, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927214

ABSTRACT

Cervical cancer is the second most common cancer in women. Despite advances in cervical cancer therapy, tumor recurrence and metastasis remain the leading causes of mortality. High expression of BMI1 is significantly associated with poor tumor differentiation, high clinical grade, and poor prognosis of cervical cancer, and is an independent prognostic factor in cervical carcinoma. Alantolactone (AL), a sesquiterpene lactone, exhibits potent anti-inflammatory and anticancer activities. In this paper, we investigated the mechanism of AL in reducing the proliferation, migration, and invasion of HeLa and SiHa cervical cancer cells as well as its promotion of mitochondrial damage and autophagy. BMI1 silencing decreased epithelial-mesenchymal transformation-associated proteins and increased autophagy-associated proteins in HeLa cells. These effects were reversed by overexpression of BMI1 in HeLa cells. Thus, BMI1 expression is positively correlated with invasion and negatively correlated with autophagy in HeLa cells. Importantly, AL decreased the weight, volume, and BMI1 expression in HeLa xenograft tumors. Furthermore, the structure of BMI1 and target interaction of AL were virtually screened using the molecular docking program Autodock Vina; AL decreased the expression of N-cadherin, vimentin, and P62 and increased the expression of LC3B and Beclin-1 in xenograft tumors. Finally, expression of BMI1 increased the phosphorylation of STAT3, which is important for cell proliferation, survival, migration, and invasion. Therefore, we suggest that AL plays a pivotal role in inhibiting BMI1 in the tumorigenesis of cervical cancer and is a potential therapeutic agent for cervical cancer.


Subject(s)
Lactones/pharmacology , Polycomb Repressive Complex 1/metabolism , Sesquiterpenes, Eudesmane/pharmacology , Uterine Cervical Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Autophagy/drug effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Progression , Epithelial-Mesenchymal Transition , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Neoplasm Invasiveness , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/genetics , Tumor Cells, Cultured , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Xenograft Model Antitumor Assays
9.
Toxicol Appl Pharmacol ; 416: 115468, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33639149

ABSTRACT

High glucose (HG)-induced nucleotide-binding and oligomerization (NACHT) domain, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome activation leads to diabetic neuropathic pain. We recently showed that salidroside could suppress NLRP3 inflammasome activation in hepatocytes exposed to HG. The aim of this study was to evaluate the analgesic effect of salidroside on diabetic rats and to explore its underlying mechanisms. Rat models with diabetic neuropathic pain were induced by high-fat diet feeding combined with low dose streptozotocin injections. Doses of salidroside at 50 and 100 mg.kg-1.day-1 were administered by gavage to diabetic rats for 6 weeks. Mechanical allodynia test, thermal hyperalgesia test and biochemical analysis were performed to evaluate therapeutic effects. Primary dorsal root ganglion (DRG) cells exposed to HG at 45 mM were used to further study the effects of salidroside on the AMP-activated protein kinase (AMPK)-NLRP3 inflammasome axis and insulin sensitivity in vitro. Salidroside administration improved hyperglycemia, ameliorated insulin resistance, and alleviated neuropathic pain in diabetic rats. Moreover, salidroside induced AMPK activation and suppressed NLRP3 inflammasome activation in the DRGs of diabetic rats. In addition, salidroside treatment relieved oxidative stress, improved insulin sensitivity and regulated the AMPK-NLRP3 inflammasome axis in HG-treated DRGs in vitro. Furthermore, AMPK inhibition in vivo or AMPK silencing in vitro abolished the beneficial effects of salidroside on diabetic neuropathic pain. Together, these results indicate that salidroside alleviates diabetic neuropathic pain through its regulation of the AMPK-NLRP3 inflammasome axis in DRGs.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Analgesics/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/prevention & control , Ganglia, Spinal/drug effects , Glucosides/pharmacology , Hypoglycemic Agents/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuralgia/prevention & control , Phenols/pharmacology , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Cells, Cultured , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/enzymology , Diabetic Neuropathies/etiology , Diabetic Neuropathies/physiopathology , Ganglia, Spinal/enzymology , Ganglia, Spinal/physiopathology , Insulin Resistance , Male , Neuralgia/enzymology , Neuralgia/etiology , Neuralgia/physiopathology , Oxidative Stress/drug effects , Pain Threshold/drug effects , Rats, Sprague-Dawley , Signal Transduction
10.
Phytochemistry ; 177: 112450, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32580106

ABSTRACT

Nine undescribed monoterpene indole alkaloids, rauvomitorine A-I, including an unprecedented C-9-methoxymethylene-sarpagine framework alkaloid, two rare suaveoline framework type alkaloids, and six yohimbine framework type alkaloids, as well as eleven known alkaloids, were isolated from the stems of Rauvolfia vomitoria Afzel. (Apocynaceae). The structures of the unreported alkaloids were elucidated by extensive spectroscopic analysis and single-crystal X-ray diffraction analysis with Cu Kα radiation. Rauvomitorine A with an unreported framework type represents the first example of C-9-methoxymethylene-sarpagine alkaloids and its plausible biosynthetic pathway was proposed. All the isolated alkaloids were evaluated their acetylcholinesterase inhibitory (AChE) activities and cytotoxicity against five cancer cell lines and some of them exhibited potential anti-AChE activities with IC50 values ranging from 49.76 to 186.62 µM. Importantly, this is the first report of the AChE inhibitory activities on suaveoline framework type alkaloids, suggesting this type of alkaloids may be valuable sources for the discovery of AChE inhibitory agents. A preliminary structure-activity relationship for AChE inhibitory activities of the isolated alkaloids is also discussed, providing some clues to designing lead compounds for AChE inhibitors.


Subject(s)
Rauwolfia , Acetylcholinesterase , Cholinesterase Inhibitors , Indole Alkaloids , Molecular Structure , Monoterpenes
11.
Bioorg Chem ; 99: 103816, 2020 06.
Article in English | MEDLINE | ID: mdl-32305693

ABSTRACT

Three previously undescribed compounds, including a meroterpenoid, guignardone T (1), and two ophiobolin-type sesterterpenoids, maydispenoids A and B (2 and 3), along with four known compounds (4-7), were isolated from the phytopathogenic fungus Bipolaris maydis collected from Anoectochilus roxburghii (Wall.) Lindl leaves. The structures of all undescribed compounds were elucidated by spectroscopic analysis, electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction. Structurally, maydispenoids A was characterized by a fascinating decahydro-3-oxacycloocta[cd]pentalene fragment. It is notable that the compounds 2 and 3 exhibited potential inhibitory activity in anti-CD3/anti-CD28 monoclonal antibodies (mAbs) stimulated murine splenocytes proliferation, with IC50 values of 5.28 and 9.38 µM, respectively, and also suppress the murine splenocytes proliferation activated by lipopolysaccharide (LPS), with IC50 values of 7.25 and 16.82 µM, respectively. This is the first report of ophiobolin-type sesterterpenoids as immunosuppressor, and may provide new chemical templates for the development of new immunosuppressive drugs for autoimmune disease treatment.


Subject(s)
Bipolaris/chemistry , Immunosuppressive Agents/pharmacology , Sesterterpenes/pharmacology , Animals , Bipolaris/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Orchidaceae/chemistry , Orchidaceae/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Sesterterpenes/chemistry , Sesterterpenes/metabolism , Spleen/drug effects , Structure-Activity Relationship
12.
Phytochemistry ; 169: 112177, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31707275

ABSTRACT

Two undescribed prenylated quinolinone alkaloids, aspoquinolones E and F, and three undescribed prenylated isoindolinone alkaloids aspernidines F-H, were isolated from the fungus Aspergillus nidulans. Their structures and configurations were elucidated based on spectroscopic analyses and ECD spectra. Aspoquinolones E and F possess a C10 moiety with an unusual 2,2,4-trimethyl-3oxa-bicyclo[3.1.0]hexane unit, and aspernidines F-H own a C15 side chain. These compounds were evaluated for cytotoxic activities against five human cancer cell lines, compounds 1 and 5 exhibited strong inhibitory activities against A-549 and SW-480 cells with IC50 values of 3.50 and 4.77 µM, respectively.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Aspergillus nidulans/chemistry , Phthalimides/pharmacology , Quinolones/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phthalimides/chemistry , Phthalimides/isolation & purification , Prenylation , Quinolones/chemistry , Quinolones/isolation & purification , Structure-Activity Relationship
13.
Front Plant Sci ; 10: 1490, 2019.
Article in English | MEDLINE | ID: mdl-31850011

ABSTRACT

Light is essential for plant organogenesis and development. Light-regulated shoot morphogenesis has been extensively studied; however, the mechanisms by which plant roots perceive and respond to aboveground light are largely unknown, particularly because the roots of most terrestrial plants are usually located underground in darkness. To mimic natural root growth conditions, we developed a root-covered system (RCS) in which the shoots were illuminated and the plant roots could be either exposed to light or cultivated in darkness. Using the RCS, we observed that root growth of wild-type plants was significantly promoted when the roots were in darkness, whereas it was inhibited by direct light exposure. This growth change seems to be regulated by ELONGATED HYPOCOTYL 5 (HY5), a master regulator of photomorphogenesis. Light was found to regulate HY5 expression in the roots, while a HY5 deficiency partially abolished the inhibition of growth in roots directly exposed to light, suggesting that HY5 expression is induced by direct light exposure and inhibits root growth. However, no differences in HY5 expression were observed between illuminated and dark-grown cop1 roots, indicating that HY5 may be regulated by COP1-mediated proteasome degradation. We confirmed the crucial role of HY5 in regulating root development in response to light under soil-grown conditions. A transcriptomic analysis revealed that light controls the expression of numerous genes involved in phytohormone signaling, stress adaptation, and metabolic processes in a HY5-dependent manner. In combination with the results of the flavonol quantification and exogenous quercetin application, these findings suggested that HY5 regulates the root response to light through a complex network that integrates flavonol biosynthesis and reactive oxygen species signaling. Collectively, our results indicate that HY5 is a master regulator of root photomorphogenesis.

14.
Front Plant Sci ; 10: 1274, 2019.
Article in English | MEDLINE | ID: mdl-31681373

ABSTRACT

Polygonum cuspidatum (Japanese knotweed, also known as Huzhang in Chinese), a plant that produces bioactive components such as stilbenes and quinones, has long been recognized as important in traditional Chinese herbal medicine. To better understand the biological features of this plant and to gain genetic insight into the biosynthesis of its natural products, we assembled a draft genome of P. cuspidatum using Illumina sequencing technology. The draft genome is ca. 2.56 Gb long, with 71.54% of the genome annotated as transposable elements. Integrated gene prediction suggested that the P. cuspidatum genome encodes 55,075 functional genes, including 6,776 gene families that are conserved in the five eudicot species examined and 2,386 that are unique to P. cuspidatum. Among the functional genes identified, 4,753 are predicted to encode transcription factors. We traced the gene duplication history of P. cuspidatum and determined that it has undergone two whole-genome duplication events about 65 and 6.6 million years ago. Roots are considered the primary medicinal tissue, and transcriptome analysis identified 2,173 genes that were expressed at higher levels in roots compared to aboveground tissues. Detailed phylogenetic analysis demonstrated expansion of the gene family encoding stilbene synthase and chalcone synthase enzymes in the phenylpropanoid metabolic pathway, which is associated with the biosynthesis of resveratrol, a pharmacologically important stilbene. Analysis of the draft genome identified 7 abscisic acid and water deficit stress-induced protein-coding genes and 14 cysteine-rich transmembrane module genes predicted to be involved in stress responses. The draft de novo genome assembly produced in this study represents a valuable resource for the molecular characterization of medicinal compounds in P. cuspidatum, the improvement of this important medicinal plant, and the exploration of its abiotic stress resistance.

15.
Org Lett ; 21(20): 8353-8357, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31573213

ABSTRACT

Alterbrassinoids A-D (1-4), the first examples of fusicoccane-derived diterpenoid dimers furnished by forming an undescribed C-12-C-18' linkage, were isolated from modified cultures of Alternaria brassicicola. Compounds 1 and 2 represent unprecedented heterodimers, whereas 3 and 4 represent unprecedented homodimers, and 4 also features an undescribed anhydride motif. Their structures were assigned via spectroscopic methods, electronic circular dichroism calculations, and single-crystal X-ray diffraction. Putative biosynthetic pathways and a bioactivity evaluation for 1-4 were discussed.


Subject(s)
Alternaria/chemistry , Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
16.
J Nat Prod ; 82(10): 2897-2906, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31573805

ABSTRACT

A preliminary phytochemical investigation on the EtOAc extracts of the fungus Bipolaris sp. TJ403-B1 resulted in the identification of 12 ophiobolin-type phytotoxins (1-12), including nine new ones, termed bipolaricins A-I (1-9). The structures of 1-9 were elucidated via spectroscopic data (including HRESIMS and 1D and 2D NMR) and single-crystal X-ray diffraction (Cu Kα) analyses. All of the isolated compounds were tested in terms of HMG-CoA reductase inhibitory, anti-inflammatory, and cytotoxic activities. Compound 10 showed HMG-CoA reductase inhibitory activity (IC50 = 8.4 ± 0.4 µM), and 2, 3, and 10-12 showed significant inhibitory potency against lipopolysaccharide (LPS)-induced nitric oxide production, with IC50 values in the range of 5.1 ± 0.3 to 20 ± 1 µM. Further experiments showed that 10 could significantly inhibit the production of IL-1ß, RANTES, MIP-1ß, and TNF-α as well as enhance the release of IL-13 in macrophages through the inhibition of HO-1 induction as well as the NF-κB pathway. These findings provide a scientific rationale for an anti-inflammatory therapeutic and a template for a new HMG-CoA reductase inhibitor to produce a potential anti-hyperlipidemia agent.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Ascomycota/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/isolation & purification , Sesterterpenes/isolation & purification , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mice , NF-kappa B/physiology , Nitric Oxide/biosynthesis , RAW 264.7 Cells , Sesterterpenes/chemistry , Sesterterpenes/pharmacology
17.
Org Lett ; 21(20): 8469-8472, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31580084

ABSTRACT

Periconiastone A (1), an ergosterol with an unprecedented pentacyclo[8.7.0.01,5.02,14.010,15]heptadecane system, was isolated from Periconia sp. TJ403-rc01. Its structure was assigned by extensive spectroscopic analyses and quantum-chemical 13C NMR and ECD calculations. A vinylogous α-ketol rearrangement and an aldol condensation reaction during biosynthesis were proposed as key steps for the formation of 1. Compound 1 showed antibacterial activity against Gram-positive S. aureus and E. faecalis with MIC values of 4 and 32 µg/mL, respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ascomycota/chemistry , Ergosterol/pharmacology , Escherichia/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Ergosterol/chemical synthesis , Ergosterol/chemistry , Microbial Sensitivity Tests , Molecular Conformation , Stereoisomerism
18.
Plant Sci ; 285: 1-13, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31203874

ABSTRACT

Bioactive gibberellins (GAs) play multiple roles in plant development and stress responses. GA2-oxidases (GA2oxs) are a class of 2-oxoglutarate-dependent dioxygenases that regulate the deactivation of bioactive GAs. In this study, we investigated the phylogeny and domain structures of the seven GA2ox genes present in the Arabidopsis thaliana genome. Comprehensive expression analysis using translational reporter lines showed that the seven GA2ox genes are differentially expressed during Arabidopsis growth and development: GA2ox1 is specifically expressed in the hypocotyl and lateral root primordium; GA2ox2 is highly expressed in aboveground tissues; GA2ox3 is expressed in the chalazal endosperm of the early embryo sac and inflorescences; GA2ox4 is expressed in the shoot apical meristem and during lateral root initiation; GA2ox6 is expressed in the maturation zone, but not in the meristem or elongating zone of the root; GA2ox7 is constitutively expressed during almost all developmental stages; and GA2ox8 is exclusively expressed in stomatal cells. Overexpression of each of these GA2ox genes inhibited high temperature-induced hypocotyl elongation in both wild-type and elongated hypocotyl 5 plants, which have an elongated hypocotyl phenotype, suggesting that these genes negatively regulate hypocotyl elongation by reducing bioactive GA levels. This study provides a valuable resource for further elucidating the roles of GA2ox genes during different stages of development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Genes, Plant/physiology , Gibberellins/metabolism , Oxidoreductases/genetics , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Gene Expression Regulation, Plant , Genes, Plant/genetics , Gibberellins/physiology , Hypocotyl/growth & development , Hypocotyl/metabolism , Oxidoreductases/metabolism , Oxidoreductases/physiology , Phylogeny , Plant Shoots/growth & development , Plant Shoots/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Transcriptome
19.
Org Lett ; 21(13): 5091-5095, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31247789

ABSTRACT

Emeriones A-C (1-3), three highly methylated polyketides with bicyclo[4.2.0]octene and 3,6-dioxabicyclo[3.1.0]hexane functionalities, were isolated from Emericella nidulans. An additional peroxide bridge in compound 3 led to the construction of an unexpected 7,8-dioxatricyclo[4.2.2.02,5]decene scaffold. The structures of 1-3 were elucidated by comprehensive spectroscopic techniques, and their absolute configurations were confirmed by single-crystal X-ray crystallographic analyses and ECD calculations. Compound 1 shows weak inhibitory effects on NO production in LPS-induced RAW264.7 cells.


Subject(s)
Alkenes/chemistry , Emericella/chemistry , Hexanes/chemistry , Polyketides/chemistry , Methylation , Models, Molecular , Molecular Conformation
20.
Biomed Res Int ; 2019: 1823149, 2019.
Article in English | MEDLINE | ID: mdl-30915347

ABSTRACT

The study determined the chemical constituents and anti-inflammatory effects of leaf oil from Cinnamomum subavenium (CS-LO) that has been used in folk medicine to treat various symptoms including inflammation. The anti-inflammatory effects of the oil were evaluated by LPS-stimulated RAW264.7 cells and the Carr-induced hind mouse paw edema model, respectively. In vitro, nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α, IL-6, and IL-1ß were significantly decreased by CS-LO, and the expression of nuclear factor-κB (NF-κB) protein was blocked as well. In in vivo, the malondialdehyde (MDA) and paw edema levels were decreased by CS-LO, and the same result came up on the NO and tumor necrosis factor (TNF-a) of serum at the 5th h after Carr injection. In addition, iNOS and COX-2 immunoreactive cells of the paw tissue were decreased significantly by CS-LO (200 mg/kg) in histological examination. The present findings indicated that CS-LO have anti-inflammatory properties, and the effects might be caused through inhibiting iNOS, COX-2, TNF-α, IL-1ß, and IL-6 expression via affecting NF-κB pathway, which will provide a power scientific basis for CS-LO to be used as the treatment of inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cinnamomum/chemistry , Plant Leaves/chemistry , Plant Oils/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Cyclooxygenase 2/immunology , Cytokines/immunology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/immunology , Lipopolysaccharides/toxicity , Mice , NF-kappa B/immunology , Nitric Oxide/immunology , Nitric Oxide Synthase Type II/immunology , Plant Oils/chemistry , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...