Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JTCVS Open ; 18: 324-344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38690424

ABSTRACT

Objective: Malignant pleural mesothelioma is a fatal disease and a clinical challenge, as few effective treatment modalities are available. Previous evidence links the gut microbiome to the host immunoreactivity to tumors. We thus evaluated the impact of a novel microbiome modulator compound (MMC) on the gut microbiota composition, tumor immune microenvironment, and cancer control in a model of malignant pleural mesothelioma. Methods: Age- and weight-matched immunocompetent (n = 23) or athymic BALB/c mice (n = 15) were randomly assigned to MMC or no treatment (control) groups. MMC (31 ppm) was administered through the drinking water 14 days before AB12 malignant mesothelioma cell inoculation into the pleural cavity. The impact of MMC on tumor growth, animal survival, tumor-infiltrating leucocytes, gut microbiome, and fecal metabolome was evaluated and compared with those of control animals. Results: The MMC delayed tumor growth and significantly prolonged the survival of immunocompetent animals (P = .0015) but not that of athymic mice. The improved tumor control in immunocompetent mice correlated with increased infiltration of CD3+CD8+GRZB+ cytotoxic T lymphocytes in tumors. Gut microbiota analyses indicated an enrichment in producers of short chain fatty acids in MMC-treated animals. Finally, we observed a positive correlation between the level of fecal short chain fatty acids and abundance of tumor-infiltrating cytotoxic T cells in malignant pleural mesothelioma. Conclusions: MMC administration boosts antitumor immunity, which correlates with a change in gut microbiome and metabolome. MMC may represent a valuable treatment option to combine with immunotherapy in patients with cancer.

2.
Eur J Cardiothorac Surg ; 58(4): 783-791, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32372095

ABSTRACT

OBJECTIVES: Malignant pleural mesothelioma (MPM) is a deadly disease with limited treatment options. Approaches to enhance patient immunity against MPM have been tested but shown variable results. Previously, we have demonstrated interesting vascular modulating properties of low-dose photodynamic therapy (L-PDT) on MPM. Here, we hypothesized that L-PDT vascular modulation could favour immune cell extravasation in MPM and improve tumour control in combination with immune checkpoint inhibitors. METHODS: First, we assessed the impact of L-PDT on vascular endothelial E-selectin expression, a key molecule for immune cell extravasation, in vitro and in a syngeneic murine model of MPM. Second, we characterized the tumour immune cell infiltrate by 15-colour flow cytometry analysis 2 and 7 days after L-PDT treatment of the murine MPM model. Third, we determined how L-PDT combined with immune checkpoint inhibitor anti-CTLA4 affected tumour growth in a murine MPM model. RESULTS: L-PDT significantly enhanced E-selectin expression by endothelial cells in vitro and in vivo. This correlated with increased CD8+ T cells and activated antigen-presenting cells (CD11b+ dendritic cells and macrophages) infiltration in MPM. Also, compared to anti-CTLA4 that only affects tumour growth, the combination of L-PDT with anti-CTLA4 caused complete MPM regression in 37.5% of animals. CONCLUSIONS: L-PDT enhances E-selectin expression in the MPM endothelium, which favours immune infiltration of tumours. The combination of L-PDT with immune checkpoint inhibitor anti-CTLA4 allows best tumour control and regression.


Subject(s)
Lung Neoplasms , Mesothelioma , Photochemotherapy , Pleural Neoplasms , Animals , Cell Line, Tumor , Disease Models, Animal , Endothelial Cells , Humans , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Mice , Pleural Neoplasms/drug therapy
3.
Clin Chim Acta ; 501: 142-146, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31730809

ABSTRACT

Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.


Subject(s)
Atherosclerosis/metabolism , Macrophages/metabolism , Animals , Humans , Macrophage Activation
4.
Eur J Med Chem ; 171: 420-433, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30928712

ABSTRACT

(E)-3,4-dihydroxystyryl alkyl sulfones, as new analogues of neurodegenerative agents, were designed and synthesized. The biological results demonstrated that most of the target compounds preserved antioxidant and anti-inflammatory potency in scavenging reactive free radicals, protecting neuronal cells against neurotoxins such as H2O2, 6-hydroxydopamine and inhibiting lipopolysaccharide (LPS)-induced over-production of NO. Among these compounds, 6.22 with cyclopentyl propyl exhibited prominent antioxidant activity at low concentration (2.5 µM) in H2O2 model (cell viability = 94.5%). In addition, 6.22 (IC50 = 1.6 µM) displayed better anti-inflammatory activity than that of lead compound 1 (IC50 = 13.4 µM). In view of the outstanding performance of 6.22, the apoptotic rates of H2O2-damaged PC12 cells were detected by Annexin V-FITC/PI assay. 6.22 showed higher potency in inhibition of apoptosis than 1 at low concentration (2.5 µM), consisting with the antioxidant and anti-inflammatory models. Furthermore, with the predicted CNS (+) blood-brain barrier (BBB) permeability (Pe = 6.84 × 10-6 cm s-1), low cytotoxicity and favorable physiochemical properties based on calculation, compound 6.22 can be further developed as a potential multifunctional neuroprotective agent.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Blood-Brain Barrier/drug effects , Neuroprotective Agents/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Apoptosis/drug effects , Biphenyl Compounds/antagonists & inhibitors , Cell Line , Dose-Response Relationship, Drug , Hydrogen Peroxide/pharmacology , Mice , Molecular Structure , Neurons/drug effects , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects , PC12 Cells , Permeability/drug effects , Picrates/antagonists & inhibitors , Rats , Structure-Activity Relationship
5.
Clin Chim Acta ; 491: 97-102, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30695687

ABSTRACT

Tissue factor pathway inhibitor (TFPI) reduces the development of atherosclerosis by regulating tissue factor (TF) mediated coagulation pathway. In this review, we focus on recent findings on the inhibitory effects of TFPI on endothelial cell activation, vascular smooth muscle cell (VSMC) proliferation and migration, inflammatory cell recruitment and extracellular matrix which are associated with the development of atherosclerosis. Meanwhile, we are also concerned about the impact of TFPI levels and genetic polymorphisms on clinical atherogenesis. This article aims to explain the mechanism in inhibiting the development of atherosclerosis and clinical effects of TFPI, and provide new ideas for the clinical researches and mechanism studies of atherothrombosis.


Subject(s)
Atherosclerosis/metabolism , Lipoproteins/metabolism , Atherosclerosis/pathology , Humans , Lipoproteins/chemistry
6.
Int J Mol Med ; 43(3): 1321-1330, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30664197

ABSTRACT

Fibroblast growth factor (FGF)­21, a member of the family of FGFs, exhibits protective effects against myocardial ischemia and ischemia/reperfusion injury; it is also an enhancer of autophagy. However, the mechanisms underlying the protective role of FGF­21 against cardiomyocyte hypoxia/reoxygenation (H/R) injury remain unclear. The present study aimed to investigate the effect of FGF­21 on H9c2 cardiomyocyte injury induced by H/R and the mechanism associated with changes in autophagy. Cultured H9c2 cardiomyocytes subjected to hypoxia were treated with a vehicle or FGF­21 during reoxygenation. The viability of H9c2 rat cardiomyocytes was measured using Cell Counting Kit­8 and trypan blue exclusion assays. The contents of creatine kinase (CK) and creatine kinase isoenzymes (CK­MB), cardiac troponin I (cTnT), cardiac troponin T (cTnI) and lactate dehydrogenase (LDH) in culture medium were detected with a CK, CK­MB, cTnT, cTnI and LDH assay kits. The protein levels were examined by western blot analysis. Autophagic flux was detected by Ad­mCherry­GFP­LC3B autophagy fluorescent adenovirus reagent. The results indicated that FGF­21 alleviated H/R­induced H9c2 myocardial cell injury and enhanced autophagic flux during H/R, and that this effect was antagonized by co­treatment with 3­methyladenine, an autophagy inhibitor. Furthermore, FGF­21 increased the expression levels of Beclin­1 and Vps34 proteins, but not of mechanistic target of rapamycin. These data indicate that FGF­21 treatment limited H/R injury in H9c2 cardiomyocytes by promoting autophagic flux through upregulation of the expression levels of Beclin­1 and Vps34 proteins.


Subject(s)
Autophagy , Fibroblast Growth Factors/metabolism , Hypoxia/metabolism , Myocytes, Cardiac/metabolism , Oxygen/metabolism , Animals , Biomarkers , Cell Line , Cell Survival , Cytoprotection , Fibroblast Growth Factors/pharmacology , Genes, Reporter , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/metabolism , Rats , Signal Transduction
7.
Clin Chim Acta ; 490: 34-38, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30571947

ABSTRACT

Endothelial cells are the main components of the heart, blood vessels, and lymphatic vessels, which play an important role in regulating the physiological functions of the cardiovascular system. Endothelial dysfunction is involved in a variety of acute and chronic cardiovascular diseases. As a special type of epithelial-mesenchymal transition (EMT), endothelium to mesenchymal transition (EndMT) regulates the transformation of endothelial cells into mesenchymal cells accompanied by changes in the expression of various transcription factors and cytokines, which is closely related to vascular endothelial injury, vascular remodeling, myocardial fibrosis and valvar disease. Endothelial cells undergoing EndMT lose their endothelial characteristics and undergo a transition toward a more mesenchymal-like phenotype. However, the molecular mechanism of EndMT remains unclear. EndMT, as a type of endothelial dysfunction, can cause vascular remodeling which is a major determinant of atherosclerotic luminal area. Therefore, exploring the important signaling pathways in the process of EndMT may provide novel therapeutic strategies for treating atherosclerotic diseases.


Subject(s)
Atherosclerosis/pathology , Epithelial-Mesenchymal Transition , Vascular Remodeling , Atherosclerosis/complications , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Humans , Neovascularization, Pathologic/complications , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...