Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 463: 132824, 2024 02 05.
Article in English | MEDLINE | ID: mdl-37890383

ABSTRACT

The knowledge of polychlorinated naphthalenes (PCNs) in the Antarctic atmosphere is quite limited compared to the Arctic. PCNs are a global concern because of their PBT characteristics (i.e., persistent, bioaccumulative, and toxic) and severe and often deadly biological effects on people and other animals. Therefore, the present study used a passive air sampling method to conduct long-term air monitoring of PCNs for almost a decade from 2013 to 2022, specifically on Fildes Peninsula, situated on King George Island, located in West Antarctica. The median sum of mono-CNs to octa-CN concentration (∑75PCNs) in the Antarctic atmosphere was 12.4 pg/m3. In terms of homologues, mono-CNs to tri-CNs predominated. Among these, the prevalent congeners observed were PCN-1 and PCN-2, originating from mono-CNs, followed by PCN-5/7 from di-CNs, and PCN-24/14 from tri-CNs, respectively. Between 2013 and 2022, the total levels of PCNs were found to have decreased approximately fourfold. Ratio analyses and principal component analysis (PCA) showed that the long-range atmospheric transport and combustion-related sources as the potential PCN sources in the study area. This paper provides the most up-to-date temporal trend analysis of PCNs in the Antarctic continent and is the first to document all 75 congeners (mono-CNs to octa-CN homologue groups).


Subject(s)
Air Pollutants , Humans , Air Pollutants/analysis , Environmental Monitoring , Antarctic Regions , Naphthalenes
2.
Environ Sci Technol ; 57(39): 14717-14725, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37682840

ABSTRACT

Dioxins, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), are among the most toxic unintentionally produced persistent organic pollutants, and their emission is of great concern. Herein, we discovered abundant dioxin formation in soil and various organic carbon-containing matrices after digestion with aqua regia. Σ17PCDD/Fs concentrations were in the range of 66.6-142,834 pg/g dw (5.6-17,021 pg WHO2005-TEQ/g dw) in 19 soil samples after digestion with aqua regia for 6 h. Σ17PCDD/Fs concentration was significantly and positively correlated with soil organic carbon content (R2 = 0.89; p < 0.01). Compared with cellulose and lignin, humic acid served as an important organic matter component that was converted to PCDD/Fs during soil digestion. Strong oxidation and production of reactive chlorine by aqua regia may be the key factors in the formation of PCDD/Fs. The yearly emission of PCDD/Fs due to digestion with strong acids by the inspection and testing industry was estimated to be 83.8 g TEQ in China in 2021 based on the highest level, which was ∼0.9% of the total dioxin inventory in China. Great attention should be paid to unexpected dioxin formation during digestion processes considering the potential risk of release from laboratories and enterprises.


Subject(s)
Benzofurans , Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Soil , Carbon , Dibenzofurans , Benzofurans/analysis , China , Dibenzofurans, Polychlorinated , Digestion , Environmental Monitoring
3.
Sci Total Environ ; 874: 162477, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858241

ABSTRACT

Guideline levels of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in feed and food have been separately recommended for the official food safety control around the world. However, less is considered about the transfer effect of PCDD/Fs from feed to food, and consequently possible human exposure risk. In this study, different controlled feeding experiments (E1 group: 4.92 pg TEQ/g in feed, E2 group: 0.61 pg TEQ/g in feed) were conducted on dairy cow (Chinese Holstein breed) to evaluate kinetics of PCDD/Fs from feed to milk and blood. Even though the PCDD/F level in feed in E2 was satisfied with the EU Regulation (No 277/2012), the TEQ levels in milk and tissues exceeded the European Union maximum level (EU ML) after approximately one-week exposure. The dynamic variation in milk during the initial 20-day exposure was successfully described by a first-order kinetic model. The levels at the plateau period showed a significant linear relationship (p < 0.01, R2 = 0.98) against the intake amounts from feed. Based on modeling, a maximum content was obtained at approximately 0.33 pg TEQ/g in cow feed with 12 % moisture to ensure the milk and meat safety under the current regulatory requirements of EU for cow-origin food. After the cease of exposure, the PCDD/F levels in milk declined below the EU ML within 40 days, while those in meat were still higher than the EU ML over 160 days. In serum, PCDD/Fs detected in E1 showed a similar dynamic variation during the exposure period. Regarding congener profile, higher-chlorinated congeners tended to transfer from feed to feces, whereas lower ones were preferably transferred into milk, which required specific concern about the metabolic effect of PCDD/Fs in large mammals. This study revealed a necessity for re-evaluation of official regulation on pollutants in cow feed and cow-origin food in terms of biotransfer and bioaccumulation.


Subject(s)
Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Cattle , Animals , Female , Humans , Milk/chemistry , Polychlorinated Dibenzodioxins/analysis , Dibenzofurans/analysis , Dibenzofurans, Polychlorinated , Food Safety , Food Contamination/analysis , Dioxins/analysis , Mammals
4.
Article in English | MEDLINE | ID: mdl-36361475

ABSTRACT

Antioxidants are prevalently used during rubber production to improve rubber performance, delay aging, and extend service life. However, recent studies have revealed that their transformation products (TPs) could adversely affect environmental organisms and even lead to environmental events, which led to great public concern about environmental occurrence and potential impacts of rubber antioxidants and their TPs. In this review, we first summarize the category and application of rubber antioxidants in the world, and then demonstrate the formation mechanism of their TPs in the environment, emphasizing their influence on the ozone oxidative degradation. The potential toxic effects of antioxidants and their TPs are further reviewed to improve understanding of their biological health impact and environmental risks. Finally, the environmental occurrences of antioxidants and their TPs are summarized and their environmental impacts are demonstrated based on the recent studies. Due to the currently limited understanding on the toxic and biological effects of these compounds, further studies are required in order to better assess various TPs of these antioxidants and their environmental impact. To our knowledge, this is the first review on antioxidants and their TPs in the environment, which may elevate the environmental risk awareness of rubber products and their TPs in the near future.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rubber/toxicity , Antioxidants
5.
Environ Pollut ; 313: 120195, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36126770

ABSTRACT

Concentrations of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in the atmosphere of Ny-Ålesund, Svalbard, were investigated. Passive air samples were collected for eight consecutive one-year periods from August 2011 to August 2019 at seven Arctic sampling sites. High-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC-HRMS) and gas chromatography coupled with election capture negative ionization mass spectrometry (GC-NCI-MS) were employed for PBDE and NBFR analysis, respectively. The median concentrations of Æ©11PBDEs and Æ©6NBFRs were 0.6 pg/m3 and 4.0 pg/m3, respectively. Hexabromobenzene and BDE-47 were the most abundant NBFR and PBDE congeners in the atmosphere, accounting for 31% and 24% of Æ©NBFR and Æ©PBDE concentrations, respectively. Æ©NBFR concentration was approximately six times higher than that of Æ©PBDEs in the same samples. Among NBFRs, the concentrations of 1,2,3,4,5-pentabromobenzene, 2,3,4,5,6-pentabromobenzene, and 2,3-dibromopropyl-2,4,6-tribromophenyl ether showed increasing temporal variations, with estimated doubling times of 3.0, 3.3, and 2.8 years, respectively. The concentrations of almost all PBDE congeners showed a decreasing variation, with halving times ranging from 2.1 to 9.5 years.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Environmental Monitoring/methods , Flame Retardants/analysis , Gas Chromatography-Mass Spectrometry , Halogenated Diphenyl Ethers/analysis
6.
J Hazard Mater ; 440: 129776, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35988490

ABSTRACT

Novel brominated flame retardants (NBFRs) and organophosphate esters (OPEs) have been widely detected in various environmental matrices worldwide and raised public concerns in recent years. However, few studies reported their occurrence and temporal trend in Antarctic air. In this study, concentrations, distribution, and temporal trends of NBFRs and OPEs in the air of Fildes Peninsula, West Antarctica, were investigated using XAD resin-based passive air sampling from January 2011 to January 2020. Air concentrations of the total OPEs (Σ7OPEs) were one to two orders of magnitude higher than those of the total NBFRs (Σ6NBFRs). Decabromodiphenyl ethane and tris(2-chloroethyl) phosphate were the most abundant NBFR and OPE congeners, respectively. Significant positive correlations were observed among hexabromobenzene, pentabromoethylbenzene, and pentabromotoluene, indicating that their occurrence in Antarctic air may be affected by similar sources. No spatial differences in any of the NBFR and OPE congeners were observed, implying minor impact from local scientific research stations. Linear regression analysis was used to evaluate the temporal trends of NBFRs and OPEs in Antarctic air, with decreasing trends observed for Σ6NBFRs and Σ7OPEs. This is one of the rare studies providing a comprehensive investigation of the temporal trends in NBFRs and OPEs in Antarctic air and highlights concern regarding the contamination of these chemicals in remote polar regions.


Subject(s)
Flame Retardants , Antarctic Regions , Atmosphere , Environmental Monitoring , Flame Retardants/analysis , Organophosphates/analysis , Phosphates/analysis
7.
Sci Total Environ ; 835: 155454, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35472355

ABSTRACT

Knowledge of the transfer features of polychlorinated naphthalenes (PCNs), a class of emerging persistent organic pollutants (POPs), is still lacking concerning the environment-feed-food transfer chain of farm animals. We conducted a controlled feeding experiment with laying hens fed fly ash-contaminated diets to investigate the toxicokinetics and bioaccumulation of PCNs (tri- to octa-CNs) in the hen eggs and tissues. The eggs showed increasing PCNs levels after 14 days of oral exposure, which gradually decreased during the 28-day depuration period but still exceeded the initial levels. The apparent one-compartment half-life of ∑63PCNs in the eggs was 28.9 days, which was comparable to those of other dioxin-like compounds. The uptake and depuration rates of PCN congeners in the eggs were 0.002-0.010 and 0.016-0.079 days-1 in eggs, respectively. The depuration rates were decreased with the n-octanol/water partition coefficients (logKOW), indicating that the eggs retained more lipophilic congeners, whereas the uptake rates increased with the logKOW, indicating the faster deposition of the more lipophilic PCNs in eggs during the exposure period. The transfer rates of PCN congeners ranged from 0.27%-23.0%, indicating the transfer potential of PCNs from feed to eggs. Additionally, the PCN distribution in the laying hens at the end of the exposure showed tissue-specific accumulation, with the high levels of PCNs in the liver, spleen, and ovum. Positive correlations between the transfer factors (Ctissue/Cfeed) and the logKOW suggested that more lipophilic PCN congeners tended to accumulate in the tissues. After quantitatively assessing the feed-to-food transfer of PCNs in laying hens, our results highlight the risk of exposure to PCNs in the food supply chain.


Subject(s)
Chickens , Dioxins , Animals , Female , Bioaccumulation , Naphthalenes , Pilot Projects , Toxicokinetics
8.
J Hazard Mater ; 434: 128872, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35429759

ABSTRACT

Concentrations of seven organophosphate ethers (OPEs) were quantified in passive air samples deployed for eight consecutive one-year periods from August 2011 to August 2019 at seven sampling sites in the area of Ny-Ålesund, Svalbard, Arctic. Non-chlorinated and chlorinated OPEs were approximately equally abundant and the mean atmospheric concentration for the sum of OPEs was around 300 pg/m3. Levels of OPEs were two orders of magnitude higher than those of polybrominated diphenyl ethers in the sampling regions, likely a result of efficient long-range transport and higher environmental release rates. For the two most abundant compounds, tris(2-chloroethyl) phosphate and tris-n-butyl phosphate, increasing temporal trends in atmospheric concentrations were observed, with estimated doubling times of 2.9 and 4.2 years, respectively. Slightly elevated OPE levels at two sampling sites in the vicinity of a research station and the local airport suggest the possible influence of local contamination sources. Re-volatilization from glaciers may also influence levels of OPE in the Arctic atmosphere.


Subject(s)
Flame Retardants , Environmental Monitoring , Esters , Flame Retardants/analysis , Organophosphates , Phosphates
9.
Chemosphere ; 300: 134521, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35395262

ABSTRACT

The per- and polyfluoroalkyl substances (PFASs) are substantially produced and applied in industrial and domestic products, which have recently aroused great public concern for their potential toxicity to humans. In the present study, raw milk (n = 107) and cow feed samples (n = 70) were collected across nine Chinese provinces, in order to investigate the occurrence of PFASs in milk and feed, and the human exposure risk to milk. The concentrations of PFASs are in the range of < method detection limit -9.82 ng/g dw (average: 1.03 ng/g dw) for milk and 0.99-144 ng/g dw (7.68 ng/g dw) for feed. Perfluorobutanoic acid (34.0%) dominates in feed, while perfluorooctanesulfonic acid (67.5%) dominates in milk. No significant positive correlations of PFASs are observed between paired feed and milk (p > 0.05). However, feeds collected around fluorination production area show relatively higher PFAS levels than those from other areas, which also increase PFAS levels in milk. Risk assessment of PFASs through milk consumption is carried out according to evolving reference doses (RfDs). The hazard quotient is more than one for both adults and children when the strictest RfDs are applied. The Monte Carlo Simulation shows that children face higher PFAS exposure risk than adults.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Cattle , China , Environmental Monitoring , Female , Fluorocarbons/analysis , Humans , Milk/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis
10.
Sci Total Environ ; 816: 151664, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34785219

ABSTRACT

A controlled feeding experiment was conducted to investigate the toxicokinetic of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in laying hens. The laying hens were fed with fly ash contaminated diets to replicate the typical environment-feed-chicken transfer chain in China. Levels of PCDD/Fs rapidly increased in the pectoralis, adipose tissue, liver and blood of laying hens with daily ingestion of dioxin-associated diets during the 14-days exposure period, and then a gradual decrease was observed in the 28-days depletion period. The depletion rates (kd) of the toxic equivalent of PCDD/Fs (TEQPCDD/Fs) were 0.043, 0.031 and 0.030 day-1 for pectoralis, liver and adipose tissue in the high-exposure group, respectively. The kd of individual PCDD/Fs in liver increased with the numbers of chlorine and n-octanol/water partition coefficient (logKOW), indicating that lower chlorinated congeners had higher half-lives in liver. Decreasing ratios of liver to adipose tissue for PCDD/Fs (L/AT) throughout the experiment suggested a tendency of equilibrium partitioning between liver and adipose tissue. Congener-specific sequestration of PCDD/Fs in liver was revealed by the positive correlation between L/AT ratios and logKOW. Physiological bioconcentration factors of PCDD/Fs were estimated at the end of exposure, indicating the preferential accumulation of hexachlorinated congeners in most tissues. Furthermore, maternal transfer of PCDD/Fs was positively correlated with logKOW, implying that more lipophilic congeners were transferred to egg along with the lipid circulation.


Subject(s)
Benzofurans , Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Animals , Chickens , Dibenzofurans , Dibenzofurans, Polychlorinated , Diet , Female , Tissue Distribution , Toxicokinetics
11.
Environ Pollut ; 291: 118252, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34597735

ABSTRACT

Research on the environmental fate and behavior of novel brominated flame retardants (NBFRs) remains limited, especially in the remote alpine regions. In this study, the concentrations and distributions of NBFRs were investigated in soils and mosses collected from two slopes of Shergyla in the southeast of the Tibetan Plateau (TP), to unravel the environmental behaviors of NBFRs in this background area. The total NBFR concentrations (∑7NBFRs) ranged from 34.2 to 879 pg/g dw in soil and from 72.8 to 2505 pg/g dw in moss. ∑7NBFRs in soil samples collected in 2019 were significantly higher than those in 2012 (p < 0.05). Decabromodiphenyl ethane (DBDPE) was the predominant NBFR, accounting for 90% of ∑7NBFRs on average. The ratio of the concentrations in moss and soil showed significantly positive correlations with LogKOA except for DBDPE (p < 0.05), indicating that the role of mosses as accumulators compared to soils are more pronounced for more volatile NBFRs. In addition, the concentrations of NBFRs generally decreased with increasing altitude on the south-facing slope, whereas on the north-facing slope some NBFRs exhibited different trends, suggesting concurrent local and long-range transport sources. Normalization based on total organic carbon/lipid concentrations strengthened the correlation with altitude, implying that the altitude gradient of the mountain slope and forest cover could jointly affect the distribution of NBFRs in the TP. Furthermore, principal components analysis (PCA) with multiple linear regression analysis (MLRA) showed that the average contribution of the mountain cold trapping effect (MCTE) accounted for the major (77%) contribution and forest filter effect (FFE) has only a modest contribution to the deposition of NBFRs in soil.


Subject(s)
Bryophyta , Flame Retardants , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Soil , Tibet
12.
Sci Total Environ ; 801: 149690, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34419913

ABSTRACT

Updated assessment on transfer of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) from feed to food is essential for understanding human exposure risk. A controlled feeding experiment was conducted for laying hens to reevaluate the transfer characteristics of dioxin-like compounds from feed to egg. Two fortified diets (1.17 and 5.13 pg TEQ g-1 dry weight), made by blending with fly ash, were fed to laying hens for 14 days, followed by 28-days depletion. Levels of ∑TEQPCDD/Fs+DL-PCBs in eggs rapidly increased once exposure started, reaching at 1.98 and 6.86 pg TEQ g-1 lw at the end of exposure for low- and high-exposure groups, respectively, and dropped to under the European legislation (maximum levels: 5.0 pg TEQ g-1 lw) after 28-days depletion. The quantitative depletions showed that the half-lives (T1/2) of ∑TEQPCDD/Fs in eggs were 23 and 14 days for low- and high-exposure groups, respectively. The depletion and accumulation rates of PCDD/Fs were in the range of 0.026-0.151 and 0.005-0.016 day-1, respectively, representing that the T1/2 of PCDD/Fs in eggs ranged from 5 to 27 days. The depletion kinetics of DL-PCBs was not significant in egg. The hens with higher laying rates exhibited shorter T1/2 of PCDD/Fs, implying that increasing laying rate could expedite the depletion of PCDD/Fs in egg. The T1/2 of PCDD/Fs in egg were negatively correlated with the chlorine number, indicating that lower chlorinated congeners tended to be retained in the egg. Transfer rates of PCDD/Fs were in the range of 4-19%, which were lower than the previous results. These results were attributed to short exposure time and low bioavailability of PCDD/Fs in fly ash. Estimations of dietary intake highlighted the dietary risk of PCDD/Fs from feed to egg, which would pose limited adverse effects on human health.


Subject(s)
Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Animals , Chickens , Dibenzofurans , Dibenzofurans, Polychlorinated , Diet , Dioxins/analysis , Eggs/analysis , Female , Food Contamination/analysis , Humans , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis
13.
Environ Sci Process Impacts ; 23(3): 400-416, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33660728

ABSTRACT

Considering the explosive growth of the list of persistent organic pollutants (POPs), the scientific community is combatting increasing challenges to protect humans and wildlife from the potentially negative consequences of POPs. Herein, we characterize the main aspects and progress in the ecotoxicology of POPs in avian species since 2000. The majority of previous efforts has revealed the global occurrence of high levels of various POPs in birds. Laboratory research and epidemiological studies imply that POPs exert a broad-spectrum of side-effects on birds by interfering with their endocrine, immune and neural system, reproduction, and development, and growth. However, inconsistent results suggest that the potential effects of POP exposure on the physiological parameters in birds are multifactorial, involving a multitude of biological processes, species-specific differences, gender, age and types of compounds. Great progress has been achieved in identifying the species-specific sensitivity to dioxin-like compounds, which is attributed to different amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor. Besides the conventional concentration additivity, several studies have suggested that different classes of POPs possibly act synergistically or antagonistically based on their concentration. However, ecotoxicology information is still recorded in a scattered and inadequate manner, including lack of enough avian species, limited number of POPs investigated, and insufficient geographical representation, and thus our understanding of the effects of POPs on birds remains rudimentary, although mechanistic understanding of their mode of action is progressing. Particularly, research on what happens to wild bird populations and their ecosystems under POP stress is still unavailable. Thus, our aim is to predict and trace the effects POPs at different biological organization levels, especially from the molecular, cellular and individual levels to the population, community and ecosystem levels because of the limited and scattered information, as mentioned above.


Subject(s)
Ecosystem , Environmental Pollutants , Animals , Birds , Ecotoxicology , Environmental Monitoring , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Humans , Persistent Organic Pollutants
14.
Sci Total Environ ; 756: 144088, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33280871

ABSTRACT

The concentrations and distributions of nine novel brominated flame retardants (NBFRs) were analyzed in soil, lichen (Usnea aurantiaco-atra), and moss (Sanionia uncinata) samples collected from the Chinese Antarctic Great Wall Station and surrounding Fildes Peninsula area in west Antarctica. Total NBFR concentrations ranged from 61.2-225 pg/g dry weight (dw) in soil, 283-1065 pg/g dw in moss, and 135-401 pg/g dw in lichen, respectively. Decabromodiphenyl ethane (DBDPE) was the dominant NBFR in all samples, accounting for 65.2%, 50.1%, and 72.4% of cumulative NBFR concentration in soil, moss, and lichen, respectively. The concentrations of NBFRs in plant samples were higher than those in soil, which may be related to plant bioaccumulation. Significant log/log-linear correlations (p < 0.05) were found between the concentrations of BEHTEBP and total organic carbon (TOC) in soil, and between DBDPE and lipid content in mosses, indicating that TOC and lipid content potentially affect certain NBFRs in Antarctic soil and moss. This study presents the first report on NBFR contamination in soil and various vegetation in Antarctica.


Subject(s)
Flame Retardants , Antarctic Regions , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Soil
15.
Chemosphere ; 267: 128859, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33176912

ABSTRACT

Passive air samples were deployed in Ny-Ålesund and London Island (Svalbard, High Arctic) annually for seven years (2011-2018) to investigate concentrations, temporal trends and potential sources of selected persistent organic pollutants (POPs). Nine polychlorinated biphenyls and twelve organochlorine pesticides were detected in all samples, with 3,3'-dichlorobiphenyl (PCB-11) being the prevalent congener. Concentrations of most compounds were declining. The ratio of the α- and γ-isomer of hexachlorocyclohexane (HCH) in Arctic air was comparable with that in technical HCH mixtures, but higher than that in the atmosphere of other countries, thereby indicating the impact of historical use as well as the possible photoisomerization of the γ- into the α-isomer. The parent dichlorodiphenyltrichloroethane (DDT) was always less abundant than its degradation products dichlorodiphenylethylene (DDE), indicative of the impact of aged DDT sources in the Arctic atmosphere. However, o,p'-/p,p'-DDT ratios suggest only a minor contribution of dicofol-type DDT. A slightly declining temporal trend of the trans-chlordane/cis-chlordane ratio indicated the impact of secondary sources. The atmospheric distribution of the investigated POPs in the Arctic was mainly attributed to long-range atmospheric transport, whereas the influence of human activities from the scientific research stations was minor.


Subject(s)
Air Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Air Pollutants/analysis , Arctic Regions , Environmental Monitoring , Humans , Hydrocarbons, Chlorinated/analysis , London , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Svalbard
16.
Environ Sci Technol ; 54(23): 15086-15096, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33190472

ABSTRACT

Arctic and Antarctic marine ecosystems, which are important components of global biodiversity, have been severely threatened by environmental pollutants in recent decades. In this study, polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated analogues (OH-PBDEs and MeO-PBDEs) were analyzed in seawater, sediment, and marine organisms (algae, invertebrates, and fishes) collected surrounding the Arctic Yellow River Station (n = 83) and the Antarctic Great Wall Station (n = 72). PBDEs and the analogues were detectable in all polar marine matrices, except MeO-PBDEs in seawater. The concentrations of ∑PBDEs, ∑MeO-PBDEs, and ∑OH-PBDEs in the marine organisms were in the range of 0.33-16 ng/g lipid weight (lw), n.d.-2.6 ng/g lw, and 0.12-2.3 ng/g lw in the Arctic and 0.06-31 ng/g lw, n.d.-5.8 ng/g lw, and 0.17-35 ng/g lw in Antarctica, respectively. Biota-sediment bioaccumulation factor (BSAF, g TOC/g lipid) values of MeO-PBDEs (0.002-0.14) and OH-PBDEs (0.004-0.18) were lower than the BSAF values of PBDEs (0.85-12). Trophic magnification was found for ∑MeO-PBDEs, whereas trophic dilution was observed for ∑OH-PBDEs in both regions. This is one of very few investigations on trophic transfer of PBDE metabolites in the Antarctic and Arctic regions and will further strengthen concerns about the ecological risk of PBDE metabolites in remote areas.


Subject(s)
Halogenated Diphenyl Ethers , Water Pollutants, Chemical , Animals , Antarctic Regions , Arctic Regions , Bioaccumulation , Ecosystem , Environmental Monitoring , Food Chain , Halogenated Diphenyl Ethers/analysis , Water Pollutants, Chemical/analysis
17.
J Environ Sci (China) ; 97: 180-185, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32933733

ABSTRACT

Novel brominated flame retardants (NBFRs) were investigated in Arctic air and soil samples collected from Ny-Ålesund and London Island, Svalbard, during Chinese scientific research expeditions to the Arctic during 2014-2015. The concentrations of Σ9NBFRs in the Arctic air and soil were 4.9-8.7 pg/m3 (average 6.8 pg/m3) and 101-201 pg/g dw (average 150 pg/g dw), respectively. The atmospheric concentration of hexabromobenzene (HBB) was significantly correlated with that of pentabromotoluene (PBT) and pentabromobenzene (PBBz), suggesting similar source and environmental fate in the Arctic air. No significant spatial difference was observed among the different sampling sites, both for air and soil samples, indicating that the effects of the scientific research stations on the occurrence of NBFRs in the Arctic were minor. The fugacities from soil to air of pentabromoethylbenzene (PBEB), 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE), and decabromodiphenylethane 1,2-bis (pentabromophenyl) ethane (DBDPE) were lower than the equilibrium value, indicating a nonequilibrium state of these compounds between air and soil, the dominant impact of deposition and the net transport from air to soil. The correlation analysis between the measured and predicted soil-atmosphere coefficients based on the absorption model showed that the impact of the soil organic matter on the distribution of NBFRs in the Arctic region was minor. To the best of our knowledge, this work is one of the limited reports on atmospheric NBFRs in the Arctic and the first study to investigate the occurrence and fate of NBFRs in the Arctic soil.


Subject(s)
Flame Retardants/analysis , Arctic Regions , Atmosphere , Environmental Monitoring , Halogenated Diphenyl Ethers/analysis , Islands , London , Soil , Svalbard
18.
Environ Pollut ; 263(Pt A): 114495, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32272423

ABSTRACT

The levels of eight organophosphate esters (OPEs) were analyzed in air and soil samples collected at Ny-Ålesund and London Island, Svalbard during the Chinese Scientific Research Expedition to the Arctic during 2014-2015. The concentrations of total OPEs (∑OPEs) ranged from 357 pg/m3 to 852 pg/m3 in the air and from 1.33 ng/g to 17.5 ng/g dry weight (dw) in the soils. Non-Cl OPEs accounted for 56 ± 13% and 62 ± 16% of ∑OPEs for the air and soil, respectively. Tris(2-chloroethyl) phosphate (TCEP) was the dominant compound in the air, with an average concentration of 180 ± 122 pg/m3. Triphenyl phosphate, tri(1-chloro-2-propyl) phosphate, and TCEP were the most abundant OPEs in the soils, with mean values of 1.77, 2.13, and 1.02 ng/g dw, respectively. Compared with the levels of polybrominated diphenyl ethers found in Arctic regions in previous studies, OPEs showed significantly higher concentrations, thereby indicating the large production and wide usage of OPEs globally. In addition, the fugacity fraction results indicated that net deposition from air to soil was dominated in the area. Overall, the occurrence and distribution of OPEs in the air and soils in the Arctic region indicated that OPEs can undergo long-range atmospheric transport and accumulate in remote regions.


Subject(s)
Flame Retardants/analysis , Soil , Arctic Regions , Environmental Monitoring , Esters , Islands , London , Organophosphates , Svalbard
19.
Sci Total Environ ; 720: 137557, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32145627

ABSTRACT

Novel brominated flame retardants (NBFRs) were comprehensively investigated in both gaseous and particle phase samples collected using a high-volume active air sampler (HV-AAS) at the Chinese Great Wall Station in King George Island, West Antarctica from 2011 to 2018. The concentrations of ∑12NBFRs ranged from 0.27 to 3.0 pg m-3, with a mean value of 1.1 ± 0.50 pg m-3 and the levels showed a slightly increasing trend over the eight years. Decabromodiphenyl ethane (DBDPE) was the predominant NBFR with a relative contribution of 50% on average. Most of the studied NBFRs tended to distribute in gaseous phase with an average ratio of 72 ± 16% while NBFRs with higher log KOA values had higher proportions in particle phase. The gas/particle partitioning models were employed to evaluate the environmental behavior of NBFRs. Compared to the equilibrium-state-based model, the steady-state-based model performed much better to predict the gas/particle partitioning of NBFRs in the West Antarctic atmosphere. Additionally, no temperature dependence was found for NBFRs except rac-(1R,2R,5R,6R)-1,2,5,6-tetrabromocyclooctane (ß-TBCO). The annual mean concentrations of ∑12NBFRs showed a significantly negative correlation with the frequency of east-southeast (ESE, 112.5°) wind and calm wind (~0 m s-1) (p < 0.05), and a significantly positive correlation with the frequency of wind from northwest interval (west to north-northwest, 270° to 337.5°) (p < 0.05), suggesting a significant effect of air mass from the ocean area. Furthermore, the chiral signature of NBFRs showed commonly non-racemic residue in the atmosphere. The enantiomer fractions (EF) of rac-(1R,2R)-1,2-dibromo-(4S)-4-((1R)-1,2-dibromoethly)cyclohexane (α-TBECH) and ß-TBCO were 0.115-0.962 and 0.281-0.795, revealing secondary sources of NBFRs, e.g., seawater-air exchange and/or non-racemic residue in the source regions. As far as we know, this is one of very few studies on NBFRs in the Antarctic atmosphere.

20.
Sci Total Environ ; 670: 122-128, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30903887

ABSTRACT

Migratory Birds have been considered biovectors of persistent organic pollutants (POPs) from sources to remote areas. In the present study, Kentish Plovers (Charadrius alexandrines) were collected in different periods, including immigration, breeding and emigration, to investigate the effects of migration and reproduction on POP variations in this bird species. Significant differences were found for dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene (HCB) concentrations in muscles between the immigration and emigration periods (p < 0.01 and p < 0.001, respectively), which could be attributed to the higher pesticide residues in the wintering grounds of plovers. Female plovers could excrete about 20.8-42.7% of POP load into eggs. Nevertheless, the POP levels didn't exhibit great reduction during the breeding period compared with other seasons, which suggested that the breeding status had little impact on POP levels in female plovers. The estimated mean transport masses of POPs driven by plover migration were at the milligram level (range: 0.02-7.05 mg), suggesting that the migration of plovers had limited impacts on the redistributions of POPs along their migratory routes.


Subject(s)
Charadriiformes/metabolism , Environmental Monitoring , Environmental Pollutants/metabolism , Animal Migration , Animals , Birds , China , DDT , Female , Hexachlorobenzene/metabolism , Hydrocarbons, Chlorinated/metabolism , Reproduction , Seasons , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...