Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Adv Mater ; : e2403775, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738804

ABSTRACT

Achieving thermochromic afterglow (TCAG) in a single material for advanced information encryption remains a significant challenge. Herein, TCAG in carbon dots (CDs)-inked paper (CDs@Paper) is achieved by tuning the temperature-dependent dual-mode afterglow of room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF). The CDs are synthesized through thermal treatment of levofloxacin in melting boric acid with postpurification via dialysis. CDs@Paper exhibit both TCAG and excitation-dependent afterglow color properties. The TCAG of CDs@Paper exhibits dynamic color changes from blue at high temperatures to yellow at low temperatures by adjusting the proportion of the temperature-dependent TADF and phosphorescence. Notably, two-photon afterglow in CDs-based afterglow materials and time-dependent two-photon afterglow colors are achieved for the first time. Moreover, leveraging the opposite emission responses of phosphorescence and TADF to temperature, CDs@Paper demonstrate TCAG with temperature-sensing capabilities across a wide temperature range. Furthermore, a CDs@Paper-based 3D code containing color and temperature information is successfully developed for advanced dynamic information encryption.

2.
Biomaterials ; 309: 122613, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38759485

ABSTRACT

Vascular restenosis following angioplasty continues to pose a significant challenge. The heterocyclic trioxirane compound [1, 3, 5-tris((oxiran-2-yl)methyl)-1, 3, 5-triazinane-2, 4, 6-trione (TGIC)], known for its anticancer activity, was utilized as the parent ring to conjugate with a non-steroidal anti-inflammatory drug, resulting in the creation of the spliced conjugated compound BY1. We found that BY1 induced ferroptosis in VSMCs as well as in neointima hyperplasia. Furthermore, ferroptosis inducers amplified BY1-induced cell death, while inhibitors mitigated it, indicating the contribution of ferroptosis to BY1-induced cell death. Additionally, we established that ferritin heavy chain1 (FTH1) played a pivotal role in BY1-induced ferroptosis, as evidenced by the fact that FTH1 overexpression abrogated BY1-induced ferroptosis, while FTH1 knockdown exacerbated it. Further study found that BY1 induced ferroptosis by enhancing the NCOA4-FTH1 interaction and increasing the amount of intracellular ferrous. We compared the effectiveness of various administration routes for BY1, including BY1-coated balloons, hydrogel-based BY1 delivery, and nanoparticles targeting OPN loaded with BY1 (TOP@MPDA@BY1) for targeting proliferated VSMCs, for prevention and treatment of the restenosis. Our results indicated that TOP@MPDA@BY1 was the most effective among the three administration routes, positioning BY1 as a highly promising candidate for the development of drug-eluting stents or treatments for restenosis.

3.
Int J Biol Macromol ; 270(Pt 1): 132026, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704074

ABSTRACT

Multiple phenolic substances have been shown to promote SIRT3 expression, however, few studies have focused on the effects of these phenolics on SIRT3 enzyme activity. This study constructed a variety of reaction systems to elucidate the mechanisms by which different polyphenols affect SIRT3 enzyme activity. The results showed that acP53317-320 was the most suitable substrate among the five acetylated peptide substrates (Kcat/Km = 74.85 ± 1.86 M-1•s-1). All the phenolic compounds involved in the experiment inhibited the enzymatic activity of SIRT3, and the lowest IC50 among them was quercetin (0.12 ± 0.01 mM) and the highest was piceatannol (1.29 ± 0.08 mM). Their inhibition types were mainly competitive and mixed. In addition, piceatannol was found to be a natural SIRT3 agonist by enzyme kinetic analysis and validation of deacetylation efficiency. This study will provide a useful reference for polyphenol modulation of SIRT3 dosage, as well as the development and application of polyphenol-based SIRT3 activators and agonists.

4.
J Geriatr Cardiol ; 21(2): 211-218, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38544493

ABSTRACT

BACKGROUND: Hypertension usually clusters with multiple comorbidities. However, the association between cardiometabolic multimorbidity (CMM) and mortality in hypertensive patients is unclear. This study aimed to investigate the association between CMM and all-cause and cardiovascular disease (CVD) mortality in Chinese patients with hypertension. METHODS: The data used in this study were from the China National Survey for Determinants of Detection and Treatment Status of Hypertensive Patients with Multiple Risk Factors (CONSIDER), which comprised 5006 participants aged 19-91 years. CMM was defined as the presence of one or more of the following morbidities: diabetes mellitus, dyslipidemia, chronic kidney disease, coronary heart disease, and stroke. Cox proportional hazard models were used to calculate the hazard ratios (HR) with 95% CI to determine the association between the number of CMMs and both all-cause and CVD mortality. RESULTS: Among 5006 participants [mean age: 58.6 ± 10.4 years, 50% women (2509 participants)], 76.4% of participants had at least one comorbidity. The mortality rate was 4.57, 4.76, 8.48, and 16.04 deaths per 1000 person-years in hypertensive patients without any comorbidity and with one, two, and three or more morbidities, respectively. In the fully adjusted model, hypertensive participants with two cardiometabolic diseases (HR = 1.52, 95% CI: 1.09-2.13) and those with three or more cardiometabolic diseases (HR = 2.44, 95% CI: 1.71-3.48) had a significantly elevated risk of all-cause mortality. The findings were similar for CVD mortality but with a greater increase in risk magnitude. CONCLUSIONS: In this study, three-fourths of hypertensive patients had CMM. Clustering with two or more comorbidities was associated with a significant increase in the risk of all-cause and cardiovascular mortality among hypertensive patients, suggesting more intensive treatment and control in this high-risk patient group.

5.
BMC Anesthesiol ; 24(1): 110, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519945

ABSTRACT

OBJECTIVE: The current study used a composite outcome to investigate whether applying the ERAS protocol would enhance the recovery of patients undergoing laparoscopic total gastrectomy (LTG). EXPOSURES: Laparoscopic total gastrectomy and perioperative interventions were the exposure. An ERAS clinical pathway consisting of 14 items was implemented and assessed. Patients were divided into either ERAS-compliant or non-ERAS-compliant group according the adherence above 9/14 or not. MAIN OUTCOMES AND MEASURES: The primary study outcome was a composite outcome called 'optimal postoperative recovery' with the definition as below: discharge within 6 days with no sever complications and no unplanned re-operation or readmission within 30 days postoperatively. Univariate logistic regression analysis and multivariate logistic regression analysis were used to model optimal postoperative recovery and compliance, adjusting for patient-related and disease-related characteristics. RESULTS: A total of 252 patients were included in this retrospective study, 129 in the ERAS compliant group and 123 in the non-ERAS-compliant group. Of these, 79.07% of the patients in ERAS compliant group achieved optimal postoperative recovery, whereas 61.79% of patients in non-ERAS-compliant group did (P = 0.0026). The incidence of sever complications was lower in the ERAS-compliant group (1.55% vs. 6.5%, P = 0.0441). No patients in ERAS compliant group had unplanned re-operation, whereas 5.69% (7/123) of patients in non-ERAS-compliant group had (p = 0.006). The median length of the postoperative hospital stay was shorter in the in the ERAS compliant group (5.51 vs. 5.68 days, P = 0.01). Both logistic (OR 2.01, 95% CI 1.21-3.34) and stepwise regression (OR 2.07, 95% CI 1.25-3.41) analysis showed that high overall compliance with the ERAS protocol facilitated optimal recovery in such patients. In bivariate analysis of compliance for patients who had an optimal postoperative recovery, carbohydrate drinks (p = 0.0196), early oral feeding (P = 0.0043), early mobilization (P = 0.0340), and restrictive intravenous fluid administration (P < 0.0001) were significantly associated with optimal postoperative recovery. CONCLUSIONS AND RELEVANCE: Patients with higher ERAS compliance (almost 70% of the accomplishment) suffered less severe postoperative complications and were more likely to achieve optimal postoperative recovery.


Subject(s)
Enhanced Recovery After Surgery , Laparoscopy , Humans , Laparoscopy/methods , Retrospective Studies , Gastrectomy/methods , Length of Stay , Postoperative Complications/epidemiology
6.
NPJ Biofilms Microbiomes ; 10(1): 29, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514648

ABSTRACT

Early dysbiosis in the gut microbiota may contribute to the severity of acute pancreatitis (AP), however, a comprehensive understanding of the gut microbiome, potential pathobionts, and host metabolome in individuals with AP remains elusive. Hence, we employed fecal whole-metagenome shotgun sequencing in 82 AP patients and 115 matched healthy controls, complemented by untargeted serum metabolome and lipidome profiling in a subset of participants. Analyses of the gut microbiome in AP patients revealed reduced diversity, disrupted microbial functions, and altered abundance of 77 species, influenced by both etiology and severity. AP-enriched species, mostly potential pathobionts, correlated positively with host liver function and serum lipid indicators. Conversely, many AP-depleted species were short-chain fatty acid producers. Gut microflora changes were accompanied by shifts in the serum metabolome and lipidome. Specifically, certain gut species, like enriched Bilophila wadsworthia and depleted Bifidobacterium spp., appeared to contribute to elevated triglyceride levels in biliary or hyperlipidemic AP patients. Through culturing and whole-genome sequencing of bacterial isolates, we identified virulence factors and clinically relevant antibiotic resistance in patient-derived strains, suggesting a predisposition to opportunistic infections. Finally, our study demonstrated that gavage of specific pathobionts could exacerbate pancreatitis in a caerulein-treated mouse model. In conclusion, our comprehensive analysis sheds light on the gut microbiome and serum metabolome in AP, elucidating the role of pathobionts in disease progression. These insights offer valuable perspectives for etiologic diagnosis, prevention, and intervention in AP and related conditions.


Subject(s)
Gastrointestinal Microbiome , Pancreatitis , Animals , Mice , Humans , Metagenome , Acute Disease , Pancreatitis/etiology , RNA, Ribosomal, 16S/genetics
7.
J Pharm Anal ; 14(1): 86-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38352945

ABSTRACT

A major impedance to neuronal regeneration after peripheral nerve injury (PNI) is the activation of various programmed cell death mechanisms in the dorsal root ganglion. Ferroptosis is a form of programmed cell death distinguished by imbalance in iron and thiol metabolism, leading to lethal lipid peroxidation. However, the molecular mechanisms of ferroptosis in the context of PNI and nerve regeneration remain unclear. Ferroportin (Fpn), the only known mammalian nonheme iron export protein, plays a pivotal part in inhibiting ferroptosis by maintaining intracellular iron homeostasis. Here, we explored in vitro and in vivo the involvement of Fpn in neuronal ferroptosis. We first delineated that reactive oxygen species at the injury site induces neuronal ferroptosis by increasing intracellular iron via accelerated UBA52-driven ubiquitination and degradation of Fpn, and stimulation of lipid peroxidation. Early administration of the potent arterial vasodilator, hydralazine (HYD), decreases the ubiquitination of Fpn after PNI by binding to UBA52, leading to suppression of neuronal cell death and significant acceleration of axon regeneration and motor function recovery. HYD targeting of ferroptosis is a promising strategy for clinical management of PNI.

8.
Adv Mater ; 36(3): e2305374, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37652460

ABSTRACT

Extracellular vesicles (EVs) have inherent advantages over cell-based therapies in regenerative medicine because of their cargos of abundant bioactive cues. Several strategies are proposed to tune EVs production in vitro. However, it remains a challenge for manipulation of EVs production in vivo, which poses significant difficulties for EVs-based therapies that aim to promote tissue regeneration, particularly for long-term treatment of diseases like peripheral neuropathy. Herein, a superparamagnetic nanocomposite scaffold capable of controlling EVs production on-demand is constructed by incorporating polyethyleneglycol/polyethyleneimine modified superparamagnetic nanoparticles into a polyacrylamide/hyaluronic acid double-network hydrogel (Mag-gel). The Mag-gel is highly sensitive to a rotating magnetic field (RMF), and can act as mechano-stimulative platform to exert micro/nanoscale forces on encapsulated Schwann cells (SCs), an essential glial cell in supporting nerve regeneration. By switching the ON/OFF state of the RMF, the Mag-gel can scale up local production of SCs-derived EVs (SCs-EVs) both in vitro and in vivo. Further transcriptome sequencing indicates an enrichment of transcripts favorable in axon growth, angiogenesis, and inflammatory regulation of SCs-EVs in the Mag-gel with RMF, which ultimately results in optimized nerve repair in vivo. Overall, this research provides a noninvasive and remotely time-scheduled method for fine-tuning EVs-based therapies to accelerate tissue regeneration, including that of peripheral nerves.


Subject(s)
Extracellular Vesicles , Peripheral Nerves , Schwann Cells/physiology , Nerve Regeneration/physiology , Magnetic Iron Oxide Nanoparticles
9.
Sci Total Environ ; 912: 168713, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38007125

ABSTRACT

Pseudanabaena sp. and the odor compound it produces, 2-methylisoborneol (2-MIB), has been reportedly responsible for off-flavor pollution worldwide, leading to substandard drinking water sensory indicators and serious water supply crises. In this paper, the hydroxyl radical (•OH) produced by the synergistic effect of strong ionization discharge and hydrodynamic cavitation rapidly inactivated Pseudanabaena sp. and simultaneously mineralized 2-MIB to a concentration of 2.57 ng/L, which is below the odor threshold of 10 ng/L for a total reactive oxidants (TRO) concentration of 1.2 mg/L within 12 s. Crucially, the intracellular 2-MIB level was maintained in approximately 155.26- 162.29 ng/L range, indicating that 2-MIB was not released from the cells. Based on the scanning electron microscopy (SEM) results, the integrity of Pseudanabaena sp. cells was maintained with intact membranes and no intracellular organic matters (IOM) released during •OH inactivation. In contrast, ClO2 caused severe membrane rupture and massive IOM release. Based on the gas chromatograph/mass spectrometer (GC/MS) analyses and mass spectral database, the chromatogram fitted the baseline with a TRO concentration of 4 mg/L and no peaks corresponding to intermediates were detected. Moreover, •OH could mineralize 2-MIB by opening the ring structures of 1,2,3,3-tetramethyl-4-cyclopentenone, neomenthol, and 2-methylcyclohexene-1-aldehyde to produce small-molecule compounds, finally leading to CO2 and H2O formation via three reaction pathways. Therefore, the •OH not only maintained the cell integrity of Pseudanabaena sp. during inactivation but also mineralized 2-MIB simultaneously.


Subject(s)
Camphanes , Cyanobacteria , Hydroxyl Radical , Odorants , Cyanobacteria/metabolism , Water Supply , Oxidants
10.
Adv Healthc Mater ; 13(9): e2303505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988388

ABSTRACT

Owing to its crucial role in the human body, collagen has immense potential as a material for the biofabrication of tissues and organs. However, highly refined fabrication using collagen remains difficult, primarily because of its notably soft properties. A quantitative biofabrication platform to construct collagen-based peripheral nerve grafts, incorporating bionic structural and chemical guidance cues, is introduced. A viscoelastic model for collagen, which facilitates simulating material relaxation and fabricating collagen-based neural grafts, achieving a maximum channel density similar to that of the native nerve structure of longitudinal microchannel arrays, is established. For axonal regeneration over considerable distances, a gradient printing control model and quantitative method are developed to realize the high-precision gradient distribution of nerve growth factor required to obtain nerve grafts through one-step bioprinting. Experiments verify that the bioprinted graft effectively guides linear axonal growth in vitro and in vivo. This study should advance biofabrication methods for a variety of human tissue-engineering applications requiring tailored cues.


Subject(s)
Bioprinting , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Collagen/chemistry , Peripheral Nerves , Bioprinting/methods , Printing, Three-Dimensional
11.
J Agric Food Chem ; 71(43): 16125-16136, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857386

ABSTRACT

Wheat alkylresorcinols (ARs) consumption has been evidenced to improve obesity and its associated insulin resistance. However, the effect of ARs on glucagon-like peptide 1 (GLP-1) secretion and the underlying mechanism of action are still unclear. In this study, C57BL/6J mice were fed low-fat diet (LFD), high-fat diet (HFD), and HFD supplemented with 0.4% (w/w) ARs separately for 9 weeks. The results showed that ARs intervention significantly improved glucose homeostasis and restored the serum level of GLP-1 compared with the HFD control group. Moreover, ARs treatment alleviated HFD-induced ileal epithelium damage according to TUNEL staining, immunofluorescence, and transmission electron microscopy observation. The alleviative effect was further verified by apoptosis analysis and mitochondrial function evaluation. Furthermore, palmitic acid (PA) was administered to the intestinal secretin tumor cell line (STC-1) to clarify the protective effect of ARs on GLP-1 secretion in vitro. In consistence with the results of animal studies, ARs treatment could significantly improve GLP-1 secretion in STC-1 cells compared with PA treatment alone in a dose-dependent manner, accompanied by a reduction in apoptosis and mitochondrial dysfunction. In addition, ARs treatment notably enhanced the abundance of SCFA (short-chain fatty acid)-producing bacteria, such as Bacteroides, Bifidobacterium, and Akkermansia. The increased levels of intestinal SCFAs, such as acetic acid, propionic acid, and butyric acid, improved the expression of short-chain fatty acid receptors (FFAR3) and glucagon-like peptide-1 receptor (GLP-1R), enhancing the secretion of the intestinal hormones GLP-1. Thus, this study provides potential clinical implications of whole wheat as a dietary strategy to improve glucose homeostasis for obese populations.


Subject(s)
Diet, High-Fat , Gastrointestinal Hormones , Mice , Animals , Diet, High-Fat/adverse effects , Glucagon-Like Peptide 1/metabolism , Mice, Obese , Triticum/metabolism , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Fatty Acids, Volatile/metabolism , Palmitic Acid/pharmacology , Glucose/metabolism , Homeostasis
12.
Adv Sci (Weinh) ; 10(32): e2304487, 2023 11.
Article in English | MEDLINE | ID: mdl-37789583

ABSTRACT

Addressing the challenge of promoting directional axonal regeneration in a hostile astrocytic scar, which often impedes recovery following spinal cord injury (SCI), remains a daunting task. Cell transplantation is a promising strategy to facilitate nerve restoration in SCI. In this research, a pro-regeneration system is developed, namely miR-26a@SPIONs-OECs, for olfactory ensheathing cells (OECs), a preferred choice for promoting nerve regeneration in SCI patients. These entities show high responsiveness to external magnetic fields (MF), leading to synergistic multimodal cues to enhance nerve regeneration. First, an MF stimulates miR-26a@SPIONs-OECs to release extracellular vesicles (EVs) rich in miR-26a. This encourages axon growth by inhibiting PTEN and GSK-3ß signaling pathways in neurons. Second, miR-26a@SPIONs-OECs exhibit a tendency to migrate and orientate along the direction of the MF, thereby potentially facilitating neuronal reconnection through directional neurite elongation. Third, miR-26a-enriched EVs from miR-26a@SPIONs-OECs can interact with host astrocytes, thereby diminishing inhibitory cues for neurite growth. In a rat model of SCI, the miR-26a@SPIONs-OECs system led to significantly improved morphological and motor function recovery. In summary, the miR-26a@SPIONS-OECs pro-regeneration system offers innovative insights into engineering exogenous cells with multiple additional cues, augmenting their efficacy for stimulating and guiding nerve regeneration within a hostile astrocytic scar in SCI.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Rats , Humans , Animals , Astrocytes/metabolism , Cicatrix/pathology , Axon Guidance , Glycogen Synthase Kinase 3 beta/metabolism , Nerve Regeneration/physiology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Magnetic Phenomena , MicroRNAs/genetics , MicroRNAs/metabolism
13.
Food Funct ; 14(11): 5001-5011, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37199511

ABSTRACT

The whitening and loss of brown adipose tissue (BAT) during obesity and aging are associated with a higher risk of metabolic syndrome and chronic diseases. 5-Heptadecylresorcinol (AR-C17), the specific biomarker of whole-grain wheat and rye intake, has been proved to have notable health promoting effects, whereas whether AR-C17 could modulate BAT function and the potential mechanism of action remains unclear. In this study, we found that AR-C17 could significantly inhibit body weight gain and insulin resistance in high-fat diet (HFD) induced obese mice. Moreover, AR-C17 treatment improved whole body energy metabolism and alleviated the whitening and loss of BAT compared with the HFD group. RNA sequencing and western-blot analysis indicated that expression of genes and proteins related to BAT energy metabolism was upregulated by AR-C17 administration, including AMPK, UCP-1, ACSL1, CPT1A, and SIRT3. These results suggested that brown adipose tissue might be the target of AR-C17 to prevent obesity and its associated insulin resistance.


Subject(s)
Obesity , Diet, High-Fat , Mice, Inbred C57BL , Male , Animals , Mice , Insulin Resistance , Adipocytes, Brown/metabolism , Energy Metabolism
14.
Stroke ; 54(5): 1312-1319, 2023 05.
Article in English | MEDLINE | ID: mdl-37094030

ABSTRACT

BACKGROUND: Although important progress has been made in understanding Lp(a) (lipoprotein[a])-mediated stroke risk, the contribution of Lp(a) to the progression of vulnerable plaque features associated with stroke risk remains unclear. This study aims to evaluate whether Lp(a) is associated with carotid plaque progression, new-onset plaque features, and plaque vulnerability in a prospective community-based cohort study. METHODS: Baseline Lp(a) levels were measured using latex-enhanced turbidimetric immunoassay among 804 participants aged 45 to 74 years and free of cardiovascular disease in the Chinese Multi-provincial Cohort Study-Beijing project. Carotid atherosclerosis was measured twice by B-mode ultrasonography over a 10-year interval during the 2002 and 2012 surveys to assess the progression of total, vulnerable and stable plaques, and plaque vulnerability. The total plaque area and plaque vulnerability score were calculated. RESULTS: The median baseline Lp(a) level was 10.20 mg/dL (interquartile range, 6.20 to 17.18 mg/dL). Modified Poisson regression analysis showed that Lp(a) ≥50 mg/dL was significantly associated with 10-year progression of total carotid plaque (relative risk [RR], 1.41 [95% CI, 1.21-1.64]; E-value=2.17), vulnerable plaque (RR, 1.93 [95% CI, 1.54-2.41]), and stable plaque (RR, 1.51 [95% CI, 1.11-2.07]) compared with Lp(a) <50 mg/dL. Moreover, among participants without plaque at baseline, Lp(a) ≥50 mg/dL was related to an increased total plaque area (ß=0.36 [95% CI, 0.06-0.65]; P=0.018) and increased plaque vulnerability score (ß=0.30 [95% CI, 0.01-0.60]; P=0.045) in multivariable linear regression. CONCLUSIONS: Elevated Lp(a) levels were associated with 10-year carotid plaque progression and plaque vulnerability, providing a basis for Lp(a) as a treatment target for stroke prevention.


Subject(s)
Plaque, Atherosclerotic , Stroke , Humans , Lipoprotein(a) , Cohort Studies , Prospective Studies , Risk Factors
15.
Mater Today Bio ; 18: 100535, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36654965

ABSTRACT

The repair of annulus fibrosus (AF) defect after discectomy in the intervertebral disc (IVD) has presented a challenge over the past decade. Hostile microenvironments in the IVD, including, compression and hypoxia, are critical issues that require special attention. Till date, little information is available on potential strategies to cope with the hypoxia dilemma in AF defect sites. In this study, perfluorotributylamine (PFTBA) core-shell fibers were fabricated by coaxial electrospinning to construct oxygen-releasing scaffold for promoting endogenous repair in the AF after discectomy. We demonstrated that PFTBA fibers (10% chitosan, chitosan: PCL, 1:6) could release oxygen for up to 144 â€‹h. The oxygen released from PFTBA fibers was found to protect annulus fibrosus stem cells (AFSCs) from hypoxia-induced apoptosis. In addition, the PFTBA fibers were able to promote proliferation, migration and extracellular matrix (ECM) production in AFSCs under hypoxia, highlighting their therapeutic potential in AF defect repair. Subsequent in vivo studies demonstrated that oxygen-supplying fibers were capable of ameliorating disc degeneration after discectomy, which was evidenced by improved disc height and morphological integrity in rats with the oxygen-releasing scaffolds. Further transcriptome analysis indicated that differential expression genes (DEGs) were enriched in "oxygen transport" and "angiogenesis", which likely contributed to their beneficial effect on endogenous AF regeneration. In summary, the oxygen-releasing scaffold provides novel insights into the oxygen regulation by bioactive materials and raises the therapeutic possibility of oxygen supply strategies for defect repair in AF, as well as other aerobic tissues.

16.
Front Pharmacol ; 13: 1035143, 2022.
Article in English | MEDLINE | ID: mdl-36419629

ABSTRACT

Inflammation following nerve injury and surgery often causes peripheral nerve adhesion (PNA) to the surrounding tissue. Numerous investigations independently examined the prevention or inhibition of PNA, however, an intervention targeting macrophages has not been fully elucidated. Basement membrane (BM) genes are known to modulate central nervous system (CNS) inflammation, however, their activities in the peripheral nervous system (PNS) remains undiscovered. In this report, we carried out weighted correlation network analysis (WCNA) to screen for principal sciatic nerve injury (SNI) module genes. Once an association between the module and BM genes was established, the protein-protein interaction (PPI) and immune infiltration analyses were employed to screen for relevant BM-related immune genes (Itgam, SDC1, Egflam, and CD44) in SNI. Subsequently, using the Drug SIGnatures (DSigDB) database and molecular docking, we demonstrated that Trichostatin A (TSA) interacted with key immune genes. TSA is known to enhance M2 macrophage expression and attenuate fibrosis. Nevertheless, the significance of the epigenetic modulation of macrophage phenotypes in dorsal root ganglion (DRG) is undetermined after SNI. In this article, we examined the TSA role in fibrogenesis and macrophage plasticity associated with DRG. We revealed that TSA enhanced M2 macrophage aggregation, inhibited fibroblast activation, and improved sciatic nerve regeneration (SNR) and sensory functional recovery (FR) after SNI. In addition, TSA suppressed M1 macrophages and enhanced M2 macrophage invasion within the DRG tissue. Furthermore, TSA dramatically reduced IL-1ß and TNFα levels, while upregulating IL-10 level. In summary, this research revealed for the first time that TSA alleviates fibrosis in DRG by promoting an M1 to M2 macrophage transition, which, in turn, accelerates SNR.

17.
Pharmacol Res ; 186: 106537, 2022 12.
Article in English | MEDLINE | ID: mdl-36334875

ABSTRACT

The intervertebral disc has an intrinsic circadian rhythm, elimination of which leads to stress in nucleus pulposus cells (NPCs), contributing to intervertebral disc degeneration (IDD). Disruption or deletion of Bmal1 (a core transcription factor) results in complete loss of circadian rhythms, make mice susceptibility to IDD. However, the underlying mechanism by which Bmal1 mediates IDD is remains enigmatic, and whether there are other upstream factors regulating Bmal1 in NPCs. In our study, we first found that the decrease of Bmal1 was significantly correlated with the grades of IDD. With gain- and loss-of-function, Bmal1 shown a protective effect on NPC viability and functions. Transcriptomic and proteomic landscape reveals the functional contributions of Bmal1, and phosphoproteomic analysis links to autophagy. Bioinformatics analysis identified that a novel miRNA hsa-let-7f-1-3p was directly target Bmal1 3'UTR and negatively correlated with NPC function. Finally, our animal model confirmed the protective role of Bmal1 in rat IDD and this effect could be attenuated by hsa-let-7f-1-3p. The hsa-let-7f-1-3p/Bmal1/autophagy axis provides a potential therapeutic strategy for the clinical treatment of IDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , MicroRNAs , Nucleus Pulposus , Animals , Mice , Rats , Apoptosis , Autophagy , Intervertebral Disc/physiology , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/drug therapy , MicroRNAs/genetics , MicroRNAs/therapeutic use , Proteomics , ARNTL Transcription Factors
18.
Biomaterials ; 289: 121755, 2022 10.
Article in English | MEDLINE | ID: mdl-36049427

ABSTRACT

Local hypoxia in cellular grafts remains a challenge during the repair of peripheral nerve injury. Oxygen carriers (perfluorotributylamine, PFTBA) have been shown to provide oxygen to Schwann cells (SCs) for a short period. However, the limited oxygen supply from oxygen-carrying materials hinders the ability of such systems to counteract hypoxia over an extended period and limits their therapeutic potential. In this study, PFTBA/VEGF core-shell fibers were fabricated through coaxial electrospinning to construct an oxygen supply system that can sequentially provide oxygen, first via the oxygen carrier and subsequently by promoting angiogenesis via VEGF. Then, the oxygen release and proangiogenic effects of the PFTBA/VEGF core-shell fibers were examined in vitro. Furthermore, sequential oxygen supply conduits prepared using the fibers and filled with SCs were used to bridge 15-mm-long sciatic nerve defects in rats. The PFTBA-VEGF system was confirmed to protect SCs from hypoxia and promote angiogenesis in vitro. Subsequent in vivo studies showed that after the oxygen carried by PFTBA was exhausted, the VEGF could induce neovascularization, and the nascent blood vessels acted as sequential oxygen suppliers for SCs during nerve regeneration. In addition, rats transplanted with the sequential oxygen supply system showed significant morphological and functional improvements in axonal regeneration, the sciatic function index, and the muscle wet weight ratio. The final functional outcomes were similar after treatment with the sequential oxygen supply conduits and autografts. Western blots revealed that the VEGF in the system could upregulate p-AMPK, contributing to axon regeneration after sciatic nerve injury. The sequential oxygen supply system offers essential insights into the oxygen regulation of biomaterials and highlights the potential of oxygen supply strategies as therapeutic approaches for repairing defects in peripheral nerves and other aerobic tissues.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries , AMP-Activated Protein Kinases/pharmacology , Animals , Axons , Biocompatible Materials/pharmacology , Hypoxia , Oxygen/pharmacology , Rats , Rats, Sprague-Dawley , Schwann Cells/transplantation , Sciatic Nerve/physiology , Vascular Endothelial Growth Factor A/pharmacology
19.
Food Funct ; 13(17): 9091-9107, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35943408

ABSTRACT

Alkylresorcinols (ARs) are phenolic lipids present in the bran part of whole grain wheat and rye, which possess antioxidant, anti-inflammatory, anti-cancer and anti-tumor properties. The physiological activities of ARs have been proven to be diverse; however, the specific molecular mechanisms are still unclear. In this study, reverse virtual screening and network pharmacology were used to explore the potential molecular mechanisms of the physiological function of ARs and their endogenous metabolites. The Metascape database was used for GO enrichment and KEGG pathway analysis. Furthermore, molecular docking was used to investigate the interactions between active compounds and potential targets. The results showed that the bioavailability of most ARs and their endogenous metabolites was 0.55 and 0.56, while the bioavailability of certain endogenous metabolites was only 0.11. Multiplex analysis was used to screen 73 important targets and 4 core targets (namely, HSP90AA1, EP300, HSP90AB1 and ERBB2) out of the 163 initial targets. The important targets involved in the key KEGG pathway were pathways in cancer (hsa05200), lipid and atherosclerosis (hsa05417), Th17 cell differentiation (hsa04659), chemical carcinogenesis-receptor activation (hsa05207), and prostate cancer (hsa05215). The compounds involved in the core targets were AR-C21, AR-C19, AR-C17, 3,5-DHPHTA-S, 3,5-DHPHTA-G, 3,5-DHPPTA, 3,5-DHPPTA-S, 3,5-DHPPTA-G, 3,5-DHPPTA-Gly and 3,5-DHPPA-G. The interaction force between them was mainly related to hydrogen bonds and van der Waals. Overall, the physiological activities of ARs are not only related to their multiple targets, but may also be related to the synergistic effect of their endogenous metabolites.


Subject(s)
Drugs, Chinese Herbal , Secale , Biomarkers , Humans , Imidazoles , Male , Molecular Docking Simulation , Network Pharmacology , Resorcinols/chemistry , Resorcinols/pharmacology , Secale/chemistry , Sulfonamides , Thiophenes , Triticum/chemistry
20.
Perioper Med (Lond) ; 11(1): 38, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35982476

ABSTRACT

BACKGROUND: Flurbiprofen has been one of the most commonly used nonsteroidal anti-inflammatory drugs (NSAIDs) in China and other Asian countries for perioperative multimodal analgesia in recent years, yet its association with anastomotic leakage in gastrointestinal anastomoses is unknown. The current study was designed to investigate whether short-term administration of flurbiprofen would increase the risk of anastomotic leakage in patients undergoing gastrointestinal surgery for cancer resection. METHODS: A total of 3653 patients (2487 (66.1%) men) undergoing elective operation for gastrointestinal cancer between 18 July 2017 and 30 Oct 2020 were included. The median age was 61 years (interquartile range 53-67 years). The exposure was the short-term postoperative use of flurbiprofen (defined as flurbiprofen treatment within the first week after surgery). The primary outcome was the frequency of clinical anastomotic leakage. RESULTS: Of 3653 patients with available data who were included in the final analysis, 2282 received flurbiprofen administration, and 1371 did not. Anastomotic leakage was not significantly increased among the patients receiving flurbiprofen compared with those who did not (1.62% v 1.46%; P=0.70). In-hospital mortality was comparable between the two groups (0.04% v 0.07%; P=0.72). After adjusted analysis, male sex (OR 3.51, 95% CI 1.80-6.85), ASA score of 3-4 (OR 2.69, 95% CI 1.62-4.48), and intraoperative infusion (OR 2.24, 95% CI 1.19-4.21) were identified as risk factors for anastomotic leakage. CONCLUSIONS: Postoperative short-term use of flurbiprofen did not increase the risk of anastomotic leakage in gastrointestinal anastomoses.

SELECTION OF CITATIONS
SEARCH DETAIL
...