Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(36): 40921-40929, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36043892

ABSTRACT

Graphene is considered as a promising cathode candidate for Li-O2 batteries because of its excellent electronic conductivity and oxygen adsorption capacity. However, for Li-O2 batteries, the self-stacking effect caused by two-dimensional (2D) structural properties of graphene is not conducive to the rapid oxygen transport and mass transfer process, thereby affecting the electrode kinetics. Here, we successfully prepared three-dimensional (3D) graphene with different scales by plasma-enhanced chemical vapor deposition and physical pulverization strategies, in which CH4 is the carbon source and H2/Ar mixed gas is the etching gas. Meanwhile, we fabricated 3D graphene-based Pt nanocatalysts by an ultraviolet-assisted construction strategy and then applied them in Li-O2 batteries. Systematic studies reveal a special relevance between electrochemical performance and graphene particle size, and the smaller-sized 3D graphene can better maintain the microstructure distribution in both the Pt embedding process and electrochemical applications, which is beneficial to the transport of oxygen and Li ions, lowering the decomposition energy barrier of Li2O2, and further obtaining reduced charge overpotential (0.22 V) and prolonged cycle life for Li-O2 batteries. Finally, we anticipate that this work could promote the practical application of 2D materials and larger-sized 3D materials in Li-O2 batteries.

2.
J Am Chem Soc ; 136(45): 15921-4, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25350678

ABSTRACT

We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈1 nm) FePt shell and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allows the optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2/0.8 nm core/shell Ni/FePt after acetic acid wash reach 1.95 mA/cm(2) and 490 mA/mgPt at 0.9 V (vs reversible hydrogen electrode), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm(2) and 92 mA/mgPt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with nonprecious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.

SELECTION OF CITATIONS
SEARCH DETAIL