Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 18(1): 71, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609971

ABSTRACT

Bio-based coating materials have received increased attention because of their low-cost, environmentally friendly, and sustainable properties. In this paper, a novel coating material was developed to coat ureas using bio-based coating material derived from liquefied eggplant branches to form controlled-release ureas (CRUs). Also, the optimum proportion of liquefier was studied. Furthermore, dimethyl siloxane was used to modify liquified eggplant branches to make them hydrophobic, resulting in hydrophobic controlled-release ureas (SCRUs). This hydrophobic-enabled coating is environmentally friendly and highly efficient. The products were characterized by specific scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry, and the water contact angles of CRUs and SCRUs were determined. The nutrient-release characteristics of the SCRUs in water were determined at 25 °C and compared with those of CRUs. The results showed that the modification with dimethyl siloxane reduced the N release rate and increased the longevity of the fertilizer coated with hydrophobic bio-based coating material. In addition, organosilicon atoms on the SCRU surface also block the micro-holes on the coating and thus reduce the entry of water onto the coating. The results suggest that the new coating technology can create a hydrophobic surface on bio-based coating material and thus improve their controlled-release characteristics.

2.
Sci Rep ; 11(1): 5761, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707467

ABSTRACT

Beach plum (Prunus maritima) is an ornamental plant, famous for its strong salt and drought stress tolerance. However, the poor growth rate of transplanted seedlings has seriously restricted its application in salinized soil. This study investigated the effects of inoculation with arbuscular mycorrhizal fungus (AMF), Funneliformis mosseae, and phosphate-solubilizing fungus (PSF), Apophysomyces spartima, on the growth, nutrient (N, P, and K) uptake, and photosynthesis of beach plum under saline (170 mM NaCl) and non-saline (0 mM NaCl) conditions. We aimed to find measures to increase the growth rate of beach plum in saline-alkali land and to understand the reasons for this increase. The results showed that salinization adversely affected colonization by AMF but positively increased PSF populations (increased by 33.9-93.3% over non-NaCl treatment). The dual application of AMF and PSF mitigated the effects of salt stress on all growth parameters and nutrient uptake, significantly for roots (dry weight and P and N contents increased by 91.0%, 68.9%, and 40%, respectively, over non-NaCl treatment). Salinization caused significant reductions in net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), and intercellular CO2 concentration (Ci) value, while inoculation with AMF and PSF inoculations significantly abated such reductions. The maximum efficiency of photosystem II (PSII) (Fv/Fm), the photochemical quenching coefficient (qP), and the nonphotochemical quenching (NPQ) values were affected little by inoculation with AMF, PSF, or both under non-NaCl treatments. However, plants inoculated with AMF and/or PSF had higher Fv/Fm, qP, and ФPSII values (increased by 72.5-188.1%) than the control under NaCl treatment, but not a higher NPQ value. We concluded that inoculation with AMF or PSF increased nutrient uptake and improved the gas-exchange and Chl fluorescence parameters of beach plum under salt stress environment. These effects could be strengthened by the combination of AMF and PSF, especially for nutrient uptake, root growth, and Pn, thereby alleviating the deleterious effects of NaCl stress on beach plum growth.

3.
Anal Biochem ; 539: 29-32, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28279647

ABSTRACT

Traditional ELISA methods of using animal immunity yield antibodies for detection Cry toxin. Not only is this incredibly harmful to the animals, but is also time-intensive. Here we developed a simple method to yield the recognition element. Using a critical selection strategy and immunoassay we confirmed a clone from the Ph.D-C7C phage library, which has displayed the most interesting Cry1Ab-binding characteristics examined in this study (Fig. 1). The current study indicates that isolating peptide is an alternative method for the preparation of a recognition element, and that the developed assay is a potentially useful tool for detecting Cry1Ab.


Subject(s)
Bacterial Proteins/analysis , Bacteriophages/metabolism , Endotoxins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Hemolysin Proteins/analysis , Peptides/metabolism , Antibodies, Monoclonal/immunology , Bacillus thuringiensis Toxins , Bacterial Proteins/immunology , Endotoxins/immunology , Hemolysin Proteins/immunology , Limit of Detection , Peptide Library , Peptides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...