Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 45(3): 1539-1552, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471868

ABSTRACT

The global occurrences of lake eutrophication have led to algal bloom and the subsequent algal decomposition, releasing high amounts of algae-derived dissolved organic matter (DOM) into the lake water. Algae-derived DOM could regulate the quantity and composition of DOM in lake water and further impact the biogeochemical cycles of multiple elements. In this study, the dynamic changes in the quantity and quality of DOM during algal decomposition under different eutrophic scenarios (e.g., from oligotrophication to severe eutrophication) were monitored, and the corresponding environmental effects (e.g., microbial responses and greenhouse gas emissions) caused by algal decomposition were further explored. The results showed that algal decomposition significantly increased the DOM levels, bioavailability, and intensities of fluorescent components in the water. The total DOM levels gradually decreased, whereas the average molecular weight increased along the decomposition process. Furthermore, unsaturated hydrocarbon and aliphatic compounds were preferentially utilized by microorganisms during algal decomposition, and some refractory molecules (e.g., lignin, condensed hydrocarbons, and tannin with high O/C values) were synchronously generated, as evidenced by the results from ultra-high-resolution mass spectrometry. The dominant bacterial species during algal decomposition shifted from Proteobacteria (46%) to Bacteroidetes (42%). In addition, algae addition resulted in 1.2-5 times the emissions of CO2 and CH4 from water, and the emission rates could be well predicted by the optical index of a254 in water. This study provides comprehensive perspectives for understanding the environmental behaviors of aquatic DOM and further paves the ways for the mitigation of lake eutrophication.


Subject(s)
Dissolved Organic Matter , Lakes , Lakes/chemistry , Mass Spectrometry , Bacteria , Water/analysis , Eutrophication , China
2.
Sci Total Environ ; 882: 163174, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37028676

ABSTRACT

Leather wastewater (LW) effluent is characterized by complex organic matter, high salinity, and poor biodegradability. To meet the discharge standards, LW effluent is often mixed with municipal wastewater (MW) before being treated at a leather industrial park wastewater treatment plant (LIPWWTP). However, whether this method efficiently removes the dissolved organic matter (DOM) from LW effluent (LWDOM) remains debatable. In this study, the transformation of DOM during full-scale treatment was revealed using spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. LWDOM exhibited higher aromaticity and lower molecular weight than DOM in MW (MWDOM). The DOM properties in mixed wastewater (MixW) were similar to those in LWDOM and MWDOM. The MixW was treated using a flocculation/primary sedimentation tank (FL1/PST), anoxic/oxic (A/O) process, secondary sedimentation tank (SST), flocculation/sedimentation tank, denitrification filter (FL2/ST-DNF), and an ozonation contact reactor (O3). The FL1/PST unit preferentially removed the peptide-like compounds. The A/O-SST units had the highest removal efficiencies for dissolved organic carbon (DOC) (61.34 %) and soluble chemical oxygen demand (SCOD) (52.2 %). The FL2/ST-DNF treatment removed the lignin-like compounds. The final treatment showed poor DOM mineralization efficiency. The correlation between water quality indices, spectral indices, and molecular-level parameters indicated that lignin-like compounds were strongly correlated with spectral indices and CHOS compounds considerably contributed to the SCOD and DOC. Although the effluent SCOD met the discharge standard, some refractory DOM from LW remained in the effluent. This study illustrates the composition and transformation of DOM and provides theoretical guidance for improving the current treatment processes.

3.
Sci Total Environ ; 784: 147190, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33895519

ABSTRACT

This study investigated heteroaggregation of three surface-functionalized polystyrene nanoparticles (PSNPs), i.e. negatively charged unfunctionalized nanoparticles (Bare-PS) and carboxylated nanoparticles (COOH-PS), and positively charged amino-functionalized nanoparticles (NH2-PS), with two model natural colloids, positively charged hematite and negatively charged kaolin, respectively. Heteroaggregation was conducted at a constant natural colloid concentration and variable NP/colloid concentration ratios. Electrostatic interaction was the main mechanism driving the formation of heteroaggregates. In binary systems containing hematite and Bare-PS/COOH-PS, a charge neutralization - charge inverse mechanism was observed with the increase of PSNP concentration. At NP/hemetite concentration ratios much smaller or larger than the full charge neutralization point, the primary heteroaggregates were stable, while full charge neutralization induced the formation of large secondary heteroaggregates. Large aggregates were not observed in suspensions containing kaolin and NH2-PS, as highly positively charged NH2-PS reversed surface charges of kaolin at extremely low concentrations. Heteroaggregation between PSNPs and natural colloids with the same charge is unfavorable due to strong electrostatic repulsion. In the presence of electrolytes, homoaggregation and heteroaggregation both occurred, and homoaggregation of hematite played a key role when the concentration of PSNPs was low. The presence of Suwannee River natural organic matter (SRNOM) could modify surface charges of nanoparticles, and thus affect heteroaggregation behaviors of the binary suspension. When SRNOM and electrolytes were both present, whether SRNOM inducing or hindering the stability of the binary system was a combined effect of NP/colloid concentration ratios, SRNOM concentrations, electrolyte types and ionic strength. Mechanisms extensively reported in homoaggregation such as steric hindrance and cation bridging effects between SRNOM and Ca2+ also stand for heteroaggregation. These results highlight the critical role of surface modification on the environmental behaviors of NPs, and will underpin our understanding of the fate and transport of NPs in the aquatic environment.

4.
Huan Jing Ke Xue ; 32(9): 2696-702, 2011 Sep.
Article in Chinese | MEDLINE | ID: mdl-22165241

ABSTRACT

One new mycete, which could degrade high concentration (up to 100 mg/L) of benzo[a]pyrene (BaP) in liquid, was isolated from contaminated soil of Beijing Coking Plant by gradually increasing the concentration of BaP in mineral salt medium (MSM) in order to get new microorganism species for remediation of BaP contamination. The strain was identified as Lasiodiplodia theobromae, and its biodegradation ability in liquid was further investigated. The results showed that L. theobromae could utilize BaP as sole carbon and energy sources. The experiment was conducted for 10 days, and the biodegradation rate of BaP was 52.5% +/- 1.5%. Compared to Czapek's mineral medium, MSM was more suitable for L. theobromae, and biodegradation rate was 2.8 percent greater than that by using Czapek's mineral media after 10 days' cultivation. Potato-dextrose nutrient medium could accelrate the biodegradation in early stage, and biodegradation rate of BaP increased by 19.2 percent in the second day. However, the accelration was not significant in the latter period, biodegradation rate was only increased by 5.4 percent after 10 days' cultivation. L. theobromae could tolerate a wide pH range, with the optimum pH of 5. Addition of salicylic and sodium succinate enhanced the biodegradation rates by 6.2 percent and 4.2 percent, respectively, after 10 days' cultivation. Besides BaP, L. theobromae could also degrade high concentration (200 mg/L) of phenanthrene and pyrene, and the biodegradation rates were 70.0% +/- 1.0%, 59.2% +/- 3.2%, and 52.5% +/- 1.5% when they were single substrate and were 21.6% +/- 2.1%, 14.5% +/- 5.5%, and 11.9% +/- 2.2% when they existed in mixture, respectively. The biodegradation rate followed an order of phenanthrene > pyrene > BaP. The co-existence of the three substrates led a reduction in biodegradation. This study provides a new microorganism species for remediation of polycyclic aromatic hydrocarbons (PAHs) contamination in the environment.


Subject(s)
Ascomycota/isolation & purification , Ascomycota/metabolism , Benzo(a)pyrene/metabolism , Environmental Pollutants/metabolism , Benzo(a)pyrene/isolation & purification , Biodegradation, Environmental , Environmental Pollutants/isolation & purification , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...