Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Chinese Journal of Zoonoses ; (12): 748-752, 2017.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-703040

ABSTRACT

We investigated the infection situation,serotype distribution,sources of etiological food and drug resistance of Salmonella in foodborne disease patients in Henan Province in 2015 and 2016.We evenly arranged 15 sentinel hospitals in Henan Province in 2015 and 2016,and a total of 5 720 patient defined cases were monitored,whose information was collected.A total of 221 Salmonella strains were isolated from the fecal of diarrhea patients,who were studied on serotyping,drug resistance and traceability of related etiological food,and the results were analyzed statistically.Results showed that the S.enteritidis,S.typhimurium and S.thompson were dominant types for serotyping in the 221 Salmonella strains,and 221 strains were widely distributed in 46 serotypes,the serotype distribution was more extensive;dairy and dairy products and meat and meat products were main suspicious etiological foods types caused by Salmonella.For drug susceptibility test of 11 kinds of antibiotics,the susceptibility of Salmonella to Cefoxitin,Cefotaxime,Chloramphenicol and Trimethoprim/Sulfamethoxazole significantly decreased (P<0.05),and that to Ciprofloxacin,Ampicillin,Tetracycline and Ampicillin/Sulbactam decreased significantly (P<0.01);only that to Ciprofloxacin,Nalidixic acid and Gentamicin decreased insignificantly (P<0.05).Relevant departments should strengthen the meat and meat products market supervision,to make great efforts for control the use of antibiotics,strengthen the active surveillance of Salmonella disease and drug resistance,and to reduce the incidence of foodborne diseases.

2.
PLoS One ; 11(5): e0154882, 2016.
Article in English | MEDLINE | ID: mdl-27159078

ABSTRACT

Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content.


Subject(s)
Computational Biology , Plant Oils/metabolism , Plants/metabolism , Lipid Metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...