Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Chem Biodivers ; : e202400963, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778509

ABSTRACT

The Sterculia genus is comprised of approximately 300 species, which have been widely used as traditional medicines to treat inflammation, snake bites, gastrointestinal diseases, skin diseases, microbial infections and many other diseases. To gain a comprehensive understanding of the therapeutic potential of Sterculia plants, an extensive literature search was conducted in CNKI, Bing, Wanfang Database, Springer Database, Elsevier Database, Google Scholar, Baidu Scholar, PubMed, and other similar websites from January 1971 to March 2024. The research indicated that Sterculia species predominantly contain flavonoids, terpenoids, phenylpropanoids, fatty acids, alkaloids and other chemical components. A wide range of pharmacologic activities such as anti-inflammatory, antioxidant, antibacterial and other biological activities have been reported. Nevertheless, there isn't much scholarly research on the therapeutic material basis of the genus Sterculia. This review reports the ethnobotany, phytochemicals, and biological activities of the plants in the Sterculia genus as herbal remedies.

2.
Front Chem ; 10: 1063645, 2022.
Article in English | MEDLINE | ID: mdl-36688056

ABSTRACT

Lichens are important sources of versatile bioactive compounds. Two new dibenzofurans (1-2), a multi-substituted single benzene ring (3), and two organic acid compounds (4-5) along with 25 known compounds (6-30) were isolated from the lichen Usnea diffracta Vain. Their structures were identified by physicochemical properties and spectral analyses. Compounds 1-30 were tested for inhibitory activities against Staphylococcus aureus, Escherichia coli, and Candida albicans by the disk diffusion method and microdilution assay respectively. Compound 3 showed moderate inhibitory activities against S. aureus and E. coli with the inhibition zone (IZ) of 6.2 mm and 6.3 mm, respectively. Depside 10 exhibited good activity against S.aureus and C. albicans with 6.6 mm and 32 µg/ml, respectively. The acetylcholinesterase inhibitory activities of compounds 1, 2, and 6-8 with the characteristic dibenzofuran scaffold were evaluated var anti-AChE assay and a molecular docking study. Compound 2 could better inhibit AChE at the concentration of 0.3 µmol/ml with a value of 61.07 ± 0.85%. The molecular docking study also demonstrated that compound 2 had the strongest binding affinity among the five dibenzofurans, and the "-CDOCKER Energy" value was 14.4513 kcal/mol.

3.
J Asian Nat Prod Res ; 22(8): 788-793, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31357881

ABSTRACT

One new triterpene glycoside, asiaticoside I (1), along with seven known ones (2-8), were isolated from the aerial parts of Cimicifuga dahurica (Turcz.) Maxim. The structure of 1 was elucidated on the basis of extensive spectroscopic methods including 1D-NMR, 2D-NMR and MS data. The structures of known compounds were determined by comparison with the literature data. Compound 1 exhibited moderate cell growth inhibitory activities in vitro against HELF, non-small cell lung cancer A549, and pancreatic cancer PANC-1 cell lines, with IC50 values of 62.97, 43.19, and 60.40 µM, respectively.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cimicifuga , Lung Neoplasms , Triterpenes , Glycosides , Humans , Molecular Structure , Plant Components, Aerial
4.
Acta Pharmaceutica Sinica ; (12): 362-370, 2017.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-779601

ABSTRACT

In recent years, owing to the abuse of antibiotics, the widespread of resistant bacterial strains became a serious threat to public health. This status demands development of new antibacterial agents with novel mechanisms of action. The reason for the limited new antibacterials is the small number of effective therapeutic targets, which cannot meet the current needs for the multiple drug-resistant treatment. Screening for new targets is the key step in the development of novel antibacterial agents. Peptidoglycan is the main component of the cell wall of bacteria, which is essential for survival of pathogenic bacteria. Within the biochemical pathway for peptidoglycan biosynthes is the Murligases, described in this review as highly potential targets for the development of new classes of antibacterial agents. This review provides an in-depth insight into the recent developments in the field of inhibitors of the Mur enzymes (MurA-F). Moreover, the reasons for the lack of candidate inhibitors and the challenges to overcome the hurdles are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...