Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pathol Oncol Res ; 30: 1611586, 2024.
Article in English | MEDLINE | ID: mdl-38689823

ABSTRACT

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Subject(s)
Liposomes , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms , Tumor-Associated Macrophages , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Mice , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays , Apoptosis , Disease Models, Animal , TNF-Related Apoptosis-Inducing Ligand/metabolism , E-Selectin/metabolism , Tumor Microenvironment/immunology
2.
Breast Cancer Res ; 25(1): 102, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37649089

ABSTRACT

BACKGROUND: Intratumor heterogeneity is a well-established hallmark of cancer that impedes cancer research, diagnosis, and treatment. Previously, we phenotypically sorted human breast cancer cells based on migratory potential. When injected into mice, highly migratory cells were weakly metastatic and weakly migratory cells were highly metastatic. The purpose of this study was to determine whether these weakly and highly migratory cells interact with each other in vitro or in vivo. METHODS: To assess the relationship between heterogeneity in cancer cell migration and metastatic fitness, MDA-MB-231 and SUM159PT triple negative breast cancer cells were phenotypically sorted into highly migratory and weakly migratory subpopulations and assayed separately and in a 1:1 mixture in vitro and in vivo for metastatic behaviors. Unpaired, two-tailed Student's t-tests, Mann-Whitney tests, ordinary, one-way ANOVAs, and Kruskal-Wallis H tests were performed as appropriate with p < 0.05 as the cutoff for statistical significance. RESULTS: When highly and weakly migratory cells are co-seeded in mixed spheroids, the weakly migratory cells migrated farther than weakly migratory only spheroids. In mixed spheroids, leader-follower behavior occurred with highly migratory cells leading the weakly migratory cells in migration strands. When cell suspensions of highly migratory, weakly migratory, or a 1:1 mixture of both subpopulations were injected orthotopically into mice, both the mixed cell suspensions and weakly migratory cells showed significant distal metastasis, but the highly migratory cells did not metastasize significantly to any location. Notably, significantly more distal metastasis was observed in mice injected with the 1:1 mixture compared to either subpopulation alone. CONCLUSIONS: This study suggests that weakly migratory cells interact with highly migratory cells in a commensal fashion resulting in increased migration and metastasis. Together, these findings indicate that cancer cell subpopulation migration ability does not correlate with metastatic potential and that cooperation between highly migratory and weakly migratory subpopulations can enhance overall metastatic fitness.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Suspensions , Symbiosis , Cell Movement , Biological Assay
3.
Elife ; 112022 12 07.
Article in English | MEDLINE | ID: mdl-36475545

ABSTRACT

Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.


Subject(s)
Breast Neoplasms , Cell-Derived Microparticles , Animals , Mice , Humans , Female , Protein Glutamine gamma Glutamyltransferase 2 , Breast Neoplasms/pathology , Fibroblasts/pathology , Cell Movement , Cell Line, Tumor , Neoplasm Metastasis/pathology
4.
Sci Adv ; 8(46): eabo1673, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36399580

ABSTRACT

Diabetes mellitus is a complex metabolic disorder that is associated with an increased risk of breast cancer. Despite this correlation, the interplay between tumor progression and diabetes, particularly with regard to stiffening of the extracellular matrix, is still mechanistically unclear. Here, we established a murine model where hyperglycemia was induced before breast tumor development. Using the murine model, in vitro systems, and patient samples, we show that hyperglycemia increases tumor growth, extracellular matrix stiffness, glycation, and epithelial-mesenchymal transition of tumor cells. Upon inhibition of glycation or mechanotransduction in diabetic mice, these same metrics are reduced to levels comparable with nondiabetic tumors. Together, our study describes a novel biomechanical mechanism by which diabetic hyperglycemia promotes breast tumor progression via glycating the extracellular matrix. In addition, our work provides evidence that glycation inhibition is a potential adjuvant therapy for diabetic cancer patients due to the key role of matrix stiffening in both diseases.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Neoplasms , Mice , Animals , Mechanotransduction, Cellular , Disease Models, Animal , Extracellular Matrix/metabolism , Neoplasms/metabolism
5.
iScience ; 25(10): 105190, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36274934

ABSTRACT

Intracellular and environmental cues result in heterogeneous cancer cell populations with different metabolic and migratory behaviors. Although glucose metabolism and epithelial-to-mesenchymal transition have previously been linked, we aim to understand how this relationship fuels cancer cell migration. We show that while glycolysis drives single-cell migration in confining microtracks, fast and slow cells display different migratory sensitivities to glycolysis and oxidative phosphorylation inhibition. Phenotypic sorting of highly and weakly migratory subpopulations (MDA+, MDA-) reveals that more mesenchymal, highly migratory MDA+ preferentially use glycolysis while more epithelial, weakly migratory MDA- utilize mitochondrial respiration. These phenotypes are plastic and MDA+ can be made less glycolytic, mesenchymal, and migratory and MDA- can be made more glycolytic, mesenchymal, and migratory via modulation of glucose metabolism or EMT. These findings reveal an intrinsic link between EMT and glucose metabolism that controls migration. Identifying mechanisms fueling phenotypic heterogeneity is essential to develop targeted metastatic therapeutics.

6.
Cancer Res ; 81(13): 3649-3663, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33975882

ABSTRACT

Although intratumoral genomic heterogeneity can impede cancer research and treatment, less is known about the effects of phenotypic heterogeneities. To investigate the role of cell migration heterogeneities in metastasis, we phenotypically sorted metastatic breast cancer cells into two subpopulations based on migration ability. Although migration is typically considered to be associated with metastasis, when injected orthotopically in vivo, the weakly migratory subpopulation metastasized significantly more than the highly migratory subpopulation. To investigate the mechanism behind this observation, both subpopulations were assessed at each stage of the metastatic cascade, including dissemination from the primary tumor, survival in the circulation, extravasation, and colonization. Although both subpopulations performed each step successfully, weakly migratory cells presented as circulating tumor cell (CTC) clusters in the circulation, suggesting clustering as one potential mechanism behind the increased metastasis of weakly migratory cells. RNA sequencing revealed weakly migratory subpopulations to be more epithelial and highly migratory subpopulations to be more mesenchymal. Depletion of E-cadherin expression from weakly migratory cells abrogated metastasis. Conversely, induction of E-cadherin expression in highly migratory cells increased metastasis. Clinical patient data and blood samples showed that CTC clustering and E-cadherin expression are both associated with worsened patient outcome. This study demonstrates that deconvolving phenotypic heterogeneities can reveal fundamental insights into metastatic progression. More specifically, these results indicate that migratory ability does not necessarily correlate with metastatic potential and that E-cadherin promotes metastasis in phenotypically sorted breast cancer cell subpopulations by enabling CTC clustering. SIGNIFICANCE: This study employs phenotypic cell sorting for migration to reveal a weakly migratory, highly metastatic breast cancer cell subpopulation regulated by E-cadherin, highlighting the dichotomy between cancer cell migration and metastasis.


Subject(s)
Antigens, CD/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating/pathology , Animals , Antigens, CD/genetics , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cadherins/genetics , Cell Proliferation , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Neoplastic Cells, Circulating/metabolism , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
NPJ Precis Oncol ; 3: 20, 2019.
Article in English | MEDLINE | ID: mdl-31453371

ABSTRACT

While considerable progress has been made in studying genetic and cellular aspects of metastasis with in vitro cell culture and in vivo animal models, the driving mechanisms of each step of metastasis are still relatively unclear due to their complexity. Moreover, little progress has been made in understanding how cellular fitness in one step of the metastatic cascade correlates with ability to survive other subsequent steps. Engineered models incorporate tools such as tailored biomaterials and microfabrication to mimic human disease progression, which when coupled with advanced quantification methods permit comparisons to human patient samples and in vivo studies. Here, we review novel tools and techniques that have been recently developed to dissect key features of the metastatic cascade using primary patient samples and highly representative microenvironments for the purposes of advancing personalized medicine and precision oncology. Although improvements are needed to increase tractability and accessibility while faithfully simulating the in vivo microenvironment, these models are powerful experimental platforms for understanding cancer biology, furthering drug screening, and facilitating development of therapeutics.

8.
Phys Biol ; 12(6): 061002, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26689380

ABSTRACT

Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.


Subject(s)
Collagen Type I/physiology , Extracellular Matrix/physiology , Tissue Engineering/methods , Tissue Scaffolds , Biocompatible Materials/metabolism
9.
Materials (Basel) ; 8(8): 5376-5384, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-28793511

ABSTRACT

Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network and the matrix. The knowledge obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds for improved tissue regeneration applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...