Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Biomacromolecules ; 24(7): 3073-3085, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37300501

ABSTRACT

Antimicrobial resistance has become a worldwide issue, with multiresistant bacterial strains emerging at an alarming rate. Multivalent antimicrobial polymer architectures such as bottle brush or star polymers have shown great potential, as they could lead to enhanced binding and interaction with the bacterial cell membrane. In this study, a library of amphiphilic star copolymers and their linear copolymer equivalents, based on acrylamide monomers, were synthesized via RAFT polymerization. Their monomer distribution and molecular weight were varied. Subsequently, their antimicrobial activity toward a Gram-negative bacterium (Pseudomonas aeruginosa PA14) and a Gram-positive bacterium (Staphylococcus aureus USA300) and their hemocompatibility were investigated. The statistical star copolymer, S-SP25, showed an improved antimicrobial activity compared to its linear equivalent againstP. aeruginosaPA14. The star architecture enhanced its antimicrobial activity, causing bacterial cell aggregation, as revealed via electron microscopy. However, it also induced increased red blood cell aggregation compared to its linear equivalents. Changing/shifting the position of the cationic block to the core of the structure prevents the cell aggregation effect while maintaining a potent antimicrobial activity for the smallest star copolymer. Finally, this compound showed antibiofilm properties against a robust in vitro biofilm model.


Subject(s)
Anti-Infective Agents , Polymers , Polymers/pharmacology , Polymers/chemistry , Anti-Infective Agents/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Microbial Sensitivity Tests
3.
NPJ Biofilms Microbiomes ; 9(1): 36, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291132

ABSTRACT

Biofilm infections are associated with a high mortality risk for patients. Antibiotics perform poorly against biofilm communities, so high doses and prolonged treatments are often used in clinical settings. We investigated the pairwise interactions of two synthetic nano-engineered antimicrobial polymers (SNAPs). The g-D50 copolymer was synergistic with penicillin and silver sulfadiazine against planktonic Staphylococcus aureus USA300 in synthetic wound fluid. Furthermore, the combination of g-D50 and silver sulfadiazine showed a potent synergistic antibiofilm activity against S. aureus USA300 using in vitro and ex vivo wound biofilm models. The a-T50 copolymer was synergistic with colistin against planktonic Pseudomonas aeruginosa in synthetic cystic fibrosis medium, and this pair showed a potent synergistic antibiofilm activity against P. aeruginosa in an ex vivo cystic fibrosis lung model. SNAPs thus have the potential for increased antibiofilm performance in combination with certain antibiotics to shorten prolonged treatments and reduce dosages against biofilm infection.


Subject(s)
Cystic Fibrosis , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Pseudomonas aeruginosa , Silver Sulfadiazine , Biofilms
4.
Front Microbiol ; 14: 1113642, 2023.
Article in English | MEDLINE | ID: mdl-37213513

ABSTRACT

Bacillus cereus G9241 was isolated from a welder who survived a pulmonary anthrax-like disease. Strain G9241 carries two virulence plasmids, pBCX01 and pBC210, as well as an extrachromosomal prophage, pBFH_1. pBCX01 has 99.6% sequence identity to pXO1 carried by Bacillus anthracis and encodes the tripartite anthrax toxin genes and atxA, a mammalian virulence transcriptional regulator. This work looks at how the presence of pBCX01 and temperature may affect the lifestyle of B. cereus G9241 using a transcriptomic analysis and by studying spore formation, an important part of the B. anthracis lifecycle. Here we report that pBCX01 has a stronger effect on gene transcription at the mammalian infection relevant temperature of 37°C in comparison to 25°C. At 37°C, the presence of pBCX01 appears to have a negative effect on genes involved in cell metabolism, including biosynthesis of amino acids, whilst positively affecting the transcription of many transmembrane proteins. The study of spore formation showed B. cereus G9241 sporulated rapidly in comparison to the B. cereus sensu stricto type strain ATCC 14579, particularly at 37°C. The carriage of pBCX01 did not affect this phenotype suggesting that other genetic elements were driving rapid sporulation. An unexpected finding of this study was that pBFH_1 is highly expressed at 37°C in comparison to 25°C and pBFH_1 expression leads to the production of Siphoviridae-like phage particles in the supernatant of B. cereus G9241. This study provides an insight on how the extrachromosomal genetic elements in B. cereus G9241 has an influence in bacterial phenotypes.

5.
Front Microbiol ; 14: 1113562, 2023.
Article in English | MEDLINE | ID: mdl-36937299

ABSTRACT

Bacillus cereus G9241 was isolated from a Louisiana welder suffering from an anthrax-like infection. The organism carries two transcriptional regulators that have previously been proposed to be incompatible with each other in Bacillus anthracis: the pleiotropic transcriptional regulator PlcR found in most members of the Bacillus cereus group but truncated in all B. anthracis isolates, and the anthrax toxin regulator AtxA found in all B. anthracis strains and a few B. cereus sensu stricto strains. Here we report cytotoxic and hemolytic activity of cell free B. cereus G9241 culture supernatants cultured at 25°C to various eukaryotic cells. However, this is not observed at the mammalian infection relevant temperature 37°C, behaving much like the supernatants generated by B. anthracis. Using a combination of genetic and proteomic approaches to understand this unique phenotype, we identified several PlcR-regulated toxins to be secreted highly at 25°C compared to 37°C. Furthermore, results suggest that differential expression of the protease involved in processing the PlcR quorum sensing activator molecule PapR appears to be the limiting step for the production of PlcR-regulated toxins at 37°C, giving rise to the temperature-dependent hemolytic and cytotoxic activity of the culture supernatants. This study provides an insight on how B. cereus G9241 is able to "switch" between B. cereus and B. anthracis-like phenotypes in a temperature-dependent manner, potentially accommodating the activities of both PlcR and AtxA.

6.
Article in English | MEDLINE | ID: mdl-35819416

ABSTRACT

Activity tests for synthetic antimicrobial compounds are often limited to the minimal inhibitory concentration assay using standard media and bacterial strains. In this study, a family of acrylamide copolymers that act as synthetic mimics of antimicrobial peptides were synthesized and shown to have a disruptive effect on bacterial membranes and structural integrity through microscopy techniques and membrane polarization experiments. The polymers were tested for their antimicrobial properties using media that mimic clinically relevant conditions. Additionally, their activity was compared in two different strains of the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa. We showed that the medium composition can have an important influence on the polymer activity as there was a considerable reduction in minimal inhibitory concentrations against S. aureus grown in synthetic wound fluid (SWF), and against P. aeruginosa grown in synthetic cystic fibrosis sputum media (SCFM), compared to the concentrations in standard testing media. In contrast, we observed a complete loss of activity against P. aeruginosa in the serum-containing SWF. Finally, we made use of an emerging invertebrate in vivo model, using Galleria mellonella larvae, to assess toxicity of the polymeric antimicrobials, showing a good correlation with cell line toxicity measurements and demonstrating its potential in the evaluation of novel antimicrobial materials.

7.
J Mater Chem B ; 10(19): 3696-3704, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35441653

ABSTRACT

The influence of polymer architecture of polycations on their ability to transfect mammalian cells is probed. Polymer bottle brushes with grafts made from partially hydrolysed poly(2-ethyl-2-oxazoline) are used while varying the length of the polymer backbone as well as the degree of hydrolysis (cationic charge content). Polyplex formation is investigated via gel electrophoresis, dye-displacement and dynamic light scattering. Bottle brushes show a superior ability to complex pDNA when compared to linear copolymers. Also, nucleic acid release was found to be improved by a graft architecture. Polyplexes based on bottle brush copolymers showed an elongated shape in transmission electron microscopy images. The cytotoxicity against mammalian cells is drastically reduced when a graft architecture is used instead of linear copolymers. Moreover, the best-performing bottle brush copolymer showed a transfection ability comparable with that of linear poly(ethylenimine), the gold standard of polymeric transfection agents, which is used as positive control. In combination with their markedly lowered cytotoxicity, cationic bottle brush copolymers are therefore shown to be a highly promising class of gene delivery vectors.


Subject(s)
Gene Transfer Techniques , Polymers , Animals , Cations , Mammals/genetics , Plasmids , Transfection
8.
Curr Biol ; 31(14): 3199-3206.e4, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34033748

ABSTRACT

Marine bacterial viruses (bacteriophages) are abundant biological entities that are vital for shaping microbial diversity, impacting marine ecosystem function, and driving host evolution.1-3 The marine roseobacter clade (MRC) is a ubiquitous group of heterotrophic bacteria4,5 that are important in the elemental cycling of various nitrogen, sulfur, carbon, and phosphorus compounds.6-10 Bacteriophages infecting MRC (roseophages) have thus attracted much attention and more than 30 roseophages have been isolated,11-13 the majority of which belong to the N4-like group (Podoviridae family) or the Chi-like group (Siphoviridae family), although ssDNA-containing roseophages are also known.14 In our attempts to isolate lytic roseophages, we obtained two new phages (DSS3_VP1 and DSS3_PM1) infecting the model MRC strain Ruegeria pomeroyi DSS-3. Here, we show that not only do these phages have unusual substitution of deoxythymidine with deoxyuridine (dU) in their DNA, but they are also phylogenetically distinct from any currently known double-stranded DNA bacteriophages, supporting the establishment of a novel family ("Naomiviridae"). These dU-containing phages possess DNA that is resistant to the commonly used library preparation method for metagenome sequencing, which may have caused significant underestimation of their presence in the environment. Nevertheless, our analysis of Tara Ocean metagenome datasets suggests that these unusual bacteriophages are of global importance and more diverse than other well-known bacteriophages, e.g., the Podoviridae in the oceans, pointing to an overlooked role for these novel phages in the environment.


Subject(s)
Bacteriophages , DNA, Viral/chemistry , Genome, Viral , Roseobacter , Bacteriophages/classification , Deoxyuridine/chemistry , Ecosystem , Phylogeny , Roseobacter/virology , Thymidine/chemistry
9.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915737

ABSTRACT

There is currently a renaissance in research on bacteriophages as alternatives to antibiotics. Phage specificity to their bacterial host, in addition to a plethora of other advantages, makes them ideal candidates for a broad range of applications, including bacterial detection, drug delivery, and phage therapy in particular. One issue obstructing phage efficiency in phage therapy settings is their poor localization to the site of infection in the human body. Here, we engineered phage T7 with lung tissue targeting homing peptides. We then used in vitro studies to demonstrate that the engineered T7 phages had a more significant association with the lung epithelium cells than wild-type T7. In addition, we showed that, in general, there was a trend of increased association of engineered phages with the lung epithelium cells but not mouse fibroblast cells, allowing for targeted tissue specificity. These results indicate that appending phages with homing peptides would potentially allow for greater phage concentrations and greater efficacy at the infection site.

10.
Front Microbiol ; 11: 548800, 2020.
Article in English | MEDLINE | ID: mdl-33101227

ABSTRACT

Temperature plays an important role in bacteria-host interactions and can be a determining factor for host switching. In this study we sought to investigate the reasons behind growth temperature restriction in the entomopathogenic enterobacterium Photorhabdus. Photorhabdus has a complex dual symbiotic and pathogenic life cycle. The genus consists of 19 species but only one subgroup, previously all classed together as Photorhabdus asymbiotica, have been shown to cause human disease. These clinical isolates necessarily need to be able to grow at 37°C, whilst the remaining species are largely restricted to growth temperatures below 34°C and are therefore unable to infect mammalian hosts. Here, we have isolated spontaneous mutant lines of Photorhabdus laumondii DJC that were able to grow up to 36-37°C. Following whole genome sequencing of 29 of these mutants we identified a single gene, encoding a protein with a RecG-like helicase domain that for the majority of isolates contained single nucleotide polymorphisms. Importantly, provision of the wild-type allele of this gene in trans restored the temperature restriction, confirming the mutations are recessive, and the dominant effect of the protein product of this gene. The gene appears to be part of a short three cistron operon, which we have termed the Temperature Restricting Locus (TRL). Transcription reporter strains revealed that this operon is induced upon the switch from 30 to 36°C, leading to replication arrest of the bacteria. TRL is absent from all of the human pathogenic species so far examined, although its presence is not uniform in different strains of the Photorhabdus luminescens subgroup. In a wider context, the presence of this gene is not limited to Photorhabdus, being found in phylogenetically diverse proteobacteria. We therefore suggest that this system may play a more fundamental role in temperature restriction in diverse species, relating to as yet cryptic aspects of their ecological niches and life cycle requirements.

11.
Cell Rep ; 29(2): 511-521.e2, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31597107

ABSTRACT

Several phage-tail-like nanomachines were shown to play an important role in the interactions between bacteria and their eukaryotic hosts. These apparatuses appear to represent a new injection paradigm. Here, with three verified extracellular contractile injection systems (eCISs), a protein profile and genomic context-based iterative approach was applied to identify 631 eCIS-like loci from the 11,699 publicly available complete bacterial genomes. The eCIS superfamily, which is phylogenetically diverse and sub-divided into six families, is distributed among Gram-negative and -positive bacteria in addition to archaea. Our results show that very few bacteria are seen to possess intact operons of both eCIS and type VI secretion systems (T6SSs). An open access online database of all detected eCIS-like loci is presented to facilitate future studies. The presence of this bacterial injection machine in a multitude of organisms suggests that it may play an important ecological role in the life cycles of many bacteria.


Subject(s)
Extracellular Space/metabolism , Genome, Bacterial , Type VI Secretion Systems/genetics , Chromosome Segregation/genetics , Genes, Bacterial , Genetic Loci , Phylogeny , Salmonella/genetics
12.
Elife ; 82019 09 17.
Article in English | MEDLINE | ID: mdl-31526474

ABSTRACT

Photorhabdus is a highly effective insect pathogen and symbiont of insecticidal nematodes. To exert its potent insecticidal effects, it elaborates a myriad of toxins and small molecule effectors. Among these, the Photorhabdus Virulence Cassettes (PVCs) represent an elegant self-contained delivery mechanism for diverse protein toxins. Importantly, these self-contained nanosyringes overcome host cell membrane barriers, and act independently, at a distance from the bacteria itself. In this study, we demonstrate that Pnf, a PVC needle complex associated toxin, is a Rho-GTPase, which acts via deamidation and transglutamination to disrupt the cytoskeleton. TEM and Western blots have shown a physical association between Pnf and its cognate PVC delivery mechanism. We demonstrate that for Pnf to exert its effect, translocation across the cell membrane is absolutely essential.


Subject(s)
Bacterial Toxins/metabolism , Epithelial Cells/metabolism , Photorhabdus/metabolism , Virulence Factors/metabolism , HeLa Cells , Humans , Protein Transport , Virulence
13.
Microbiology (Reading) ; 165(5): 516-526, 2019 05.
Article in English | MEDLINE | ID: mdl-30882293

ABSTRACT

Members of the Gram-negative bacterial genus Photorhabdus are all highly insect pathogenic and exist in an obligate symbiosis with the entomopathogenic nematode worm Heterorhabditis. All members of the genus produce the small-molecule 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS) as part of their secondary metabolism. IPS is a multi-potent compound that has antimicrobial, antifungal, immunomodulatory and anti-cancer activities and also plays an important role in symbiosis with the nematode. In this study we have examined the response of Photorhabdus itself to exogenous ectopic addition of IPS at physiologically relevant concentrations. We observed that the bacteria had a measureable phenotypic response, which included a decrease in bioluminescence and pigment production. This was reflected in changes in its transcriptomic response, in which we reveal a reduction in transcript levels of genes relating to many fundamental cellular processes, such as translation and oxidative phosphorylation. Our observations suggest that IPS plays an important role in the biology of Photorhabdus bacteria, fulfilling roles in quorum sensing, antibiotic-competition advantage and maintenance of the symbiotic developmental cycle.


Subject(s)
Photorhabdus/growth & development , Photorhabdus/metabolism , Stilbenes/chemistry , Stilbenes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Oxidative Phosphorylation , Photorhabdus/genetics , Quorum Sensing , Secondary Metabolism
14.
Chem Sci ; 10(42): 9708-9720, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-32015803

ABSTRACT

A range of new water-compatible optically pure metallohelices - made by self-assembly of simple non-peptidic organic components around Fe ions - exhibit similar architecture to some natural cationic antimicrobial peptides (CAMPs) and are found to have high, structure-dependent activity against bacteria, including clinically problematic Gram-negative pathogens. A key compound is shown to freely enter rapidly dividing E. coli cells without significant membrane disruption, and localise in distinct foci near the poles. Several related observations of CAMP-like mechanisms are made via biophysical measurements, whole genome sequencing of tolerance mutants and transcriptomic analysis. These include: high selectivity for binding of G-quadruplex DNA over double stranded DNA; inhibition of both DNA gyrase and topoisomerase I in vitro; curing of a plasmid that contributes to the very high virulence of the E. coli strain used; activation of various two-component sensor/regulator and acid response pathways; and subsequent attempts by the cell to lower the net negative charge of the surface. This impact of the compound on multiple structures and pathways corresponds with our inability to isolate fully resistant mutant strains, and supports the idea that CAMP-inspired chemical scaffolds are a realistic approach for antimicrobial drug discovery, without the practical barriers to development that are associated with natural CAMPS.

15.
Curr Top Microbiol Immunol ; 402: 159-177, 2017.
Article in English | MEDLINE | ID: mdl-27726002

ABSTRACT

Photorhabdus asymbiotica is a species of bacterium that is pathogenic to humans whilst retaining the ability to infect insect hosts. Currently, there are two recognised subspecies, P. asymbiotica subsp. asymbiotica and P. asymbiotica subsp. australis with strains isolated from various locations in the USA, Australia, Thailand, Nepal and Europe. Like other species of Photorhabdus, P. asymbiotica subsp. australis was shown to form a symbiotic relationship with a Heterorhabditis nematode. In contrast to most strains of Photorhabdus luminescens, P. asymbiotica can grow at 37 °C and this is a defining factor in its ability to cause human disease. Insights into other adaptations it has undergone that have enabled host switching to occur have come from whole genome sequencing and transcriptomic studies. P. asymbiotica has a smaller genome compared to P. luminenscens with a lower diversity of insecticidal toxins. However, it has acquired plasmids and several pathogenicity islands in its genome. These encode genes with similarity to effectors or systems found in other known human pathogens such as Salmonella and Yersinia and are therefore likely to contribute to human pathogenicity. Of crucial importance to virulence is the fact that P. asymbiotica undergoes a large metabolic shift at the human host temperature.


Subject(s)
Photorhabdus , Animals , Australia , Europe , Genome , Humans , Insecta/microbiology , Photorhabdus/genetics , Photorhabdus/pathogenicity , Virulence
16.
PLoS One ; 10(12): e0144937, 2015.
Article in English | MEDLINE | ID: mdl-26681201

ABSTRACT

Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called "nutritional virulence" strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.


Subject(s)
Photorhabdus/pathogenicity , Animals , Biofilms , Enterobacteriaceae Infections/microbiology , Humans , Manduca/microbiology , Mice , Oligonucleotide Array Sequence Analysis , Photorhabdus/genetics , Photorhabdus/physiology , RNA, Bacterial/genetics , Real-Time Polymerase Chain Reaction , Temperature
17.
Infect Immun ; 83(7): 2725-37, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25895973

ABSTRACT

We report a novel host-associated virulence plasmid in Rhodococcus equi, pVAPN, carried by bovine isolates of this facultative intracellular pathogenic actinomycete. Surprisingly, pVAPN is a 120-kb invertron-like linear replicon unrelated to the circular virulence plasmids associated with equine (pVAPA) and porcine (pVAPB variant) R. equi isolates. pVAPN is similar to the linear plasmid pNSL1 from Rhodococcus sp. NS1 and harbors six new vap multigene family members (vapN to vapS) in a vap pathogenicity locus presumably acquired via en bloc mobilization from a direct predecessor of equine pVAPA. Loss of pVAPN rendered R. equi avirulent in macrophages and mice. Mating experiments using an in vivo transconjugant selection strategy demonstrated that pVAPN transfer is sufficient to confer virulence to a plasmid-cured R. equi recipient. Phylogenetic analyses assigned the vap multigene family complement from pVAPN, pVAPA, and pVAPB to seven monophyletic clades, each containing plasmid type-specific allelic variants of a precursor vap gene carried by the nearest vap island ancestor. Deletion of vapN, the predicted "bovine-type" allelic counterpart of vapA, essential for virulence in pVAPA, abrogated pVAPN-mediated intramacrophage proliferation and virulence in mice. Our findings support a model in which R. equi virulence is conferred by host-adapted plasmids. Their central role is mediating intracellular proliferation in macrophages, promoted by a key vap determinant present in the common ancestor of the plasmid-specific vap islands, with host tropism as a secondary trait selected during coevolution with specific animal species.


Subject(s)
Macrophages/microbiology , Microbial Viability , Plasmids , Rhodococcus equi/physiology , Animals , Cattle , Cluster Analysis , Conjugation, Genetic , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Transfer, Horizontal , Genes, Bacterial , Mice, Inbred BALB C , Molecular Sequence Data , Phylogeny , Rhodococcus equi/genetics , Rhodococcus equi/growth & development , Rhodococcus equi/isolation & purification , Sequence Analysis, DNA , Sequence Homology , Virulence , Virulence Factors/genetics
18.
Vet Microbiol ; 172(1-2): 256-64, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-24852140

ABSTRACT

The pathogenic actinomycete Rhodococcus equi causes severe purulent lung infections in foals and immunocompromised people. Although relatively unsusceptible to R. equi, mice are widely used for in vivo studies with this pathogen. The most commonly employed mouse model is based on systemic (intravenous) infection and determination of R. equi burdens in spleen and liver. Here, we investigated the murine lung for experimental infection studies with R. equi. Using a 10(7)CFU intranasal challenge in BALB/c mice, virulent R. equi consistently survived in quantifiable numbers up to 10 days in the lungs whereas virulence-deficient R. equi bacteria were rapidly cleared. An internally controlled virulence assay was developed in which the test R. equi strains are co-inoculated and monitored in the same mouse. Isogenic R. equi bacteria lacking either the plasmid vapA gene or the entire virulence plasmid were compared using this competitive assay. Both strains showed no significant differences in in vivo fitness in the lung, indicating that the single loss of the virulence factor VapA was sufficient to account for the full attenuation seen in the absence of the virulence plasmid. To test the adequacy of the lung infection model for monitoring R. equi vaccine efficacy, BALB/c mice were immunized with live R. equi and challenged intranasally. Vaccination conferred protection against acute pulmonary challenge with virulent R. equi. Our data indicate that the murine lung infection model provides a useful tool for both R. equi virulence and vaccine studies.


Subject(s)
Actinomycetales Infections/prevention & control , Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Rhodococcus equi/immunology , Rhodococcus equi/pathogenicity , Virulence Factors/immunology , Actinomycetales Infections/immunology , Actinomycetales Infections/microbiology , Actinomycetales Infections/pathology , Animals , Bacterial Proteins/genetics , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Disease Models, Animal , Female , Lung/immunology , Lung/pathology , Mice , Mice, Inbred BALB C , Rhodococcus equi/genetics , Vaccination , Virulence , Virulence Factors/deficiency , Virulence Factors/genetics
19.
Vet Microbiol ; 167(1-2): 9-33, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-23993705

ABSTRACT

Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity.


Subject(s)
Actinomycetales Infections/veterinary , Horse Diseases/microbiology , Horse Diseases/pathology , Rhodococcus equi/physiology , Actinomycetales Infections/microbiology , Actinomycetales Infections/pathology , Actinomycetales Infections/transmission , Animals , Horse Diseases/transmission , Horses , Host Specificity , Humans , Phagocytosis/genetics , Plasmids/genetics , Rhodococcus equi/genetics , Rhodococcus equi/pathogenicity
20.
PLoS Genet ; 6(9): e1001145, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20941392

ABSTRACT

We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid-rich intestine and manure of herbivores--two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche-adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT-acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi.


Subject(s)
Evolution, Molecular , Genes, Bacterial/genetics , Rhodococcus equi/pathogenicity , Adaptation, Physiological/genetics , Animals , Chromosomes, Bacterial/genetics , Gene Duplication/genetics , Gene Regulatory Networks/genetics , Gene Transfer, Horizontal/genetics , Genetic Loci/genetics , Genomics , Intracellular Space/microbiology , Kinetics , Macrophages/cytology , Macrophages/microbiology , Mice , Mutation/genetics , Phylogeny , Plasmids/genetics , Rhodococcus equi/genetics , Rhodococcus equi/growth & development , Rhodococcus equi/ultrastructure , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...