Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 252(Pt B): 974-981, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31252136

ABSTRACT

During their lifecycle, many engineered nanoparticles (ENPs) undergo significant transformations that may modify their toxicity, behaviour, and fate in the environment. Therefore, understanding the possible environmentally relevant transformations that ENPs may undergo as a result of their surroundings is becoming increasingly important. This work considers industrially produced ceria (CeO2) and focuses on a particle library consisting of seven zirconium-doped variants (Ce1-xZrxO2) where the Zr doping range is x = 0-1. The study assesses their potential transformation in the presence of environmentally relevant concentrations of phosphate. These ENPs have an important role in the operation of automotive catalysts and therefore may end up in the environment where transformations can take place. Samples were exposed to pH adjusted (c. 5.5) solutions made up of either 1 mM or 5 mM each of KH2PO4, citric acid and ascorbic acid and the transformed particles were characterised by means of DLS - size and zeta potential, UV/VIS, TEM, FT-IR, EDX and XRD. Exposure to the phosphate solutions resulted in chemical and physical changes in all ceria-containing samples to cerium phosphate (with the monazite structure). The transformations were dependent on time, ceria concentration in the particles (Ce:Zr ratio) and phosphate to ceria ratio. The presence of Zr within the doped samples did not inhibit these transformations, yet the pure end member ZrO2 ENPs showed no conversion to phosphate. The quite dramatic changes in size, structure and composition observed raise important questions regarding the relevant form of the materials to investigate in ecotoxicity tests, and for regulations based on one or more dimensions in the nanoscale.


Subject(s)
Cerium/chemistry , Environmental Pollutants/chemistry , Nanoparticles/chemistry , Phosphates/chemistry , Zirconium/chemistry , Catalysis , Metals, Rare Earth/chemistry , Particle Size , Surface Properties
2.
PLoS One ; 14(6): e0217483, 2019.
Article in English | MEDLINE | ID: mdl-31173616

ABSTRACT

The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials' own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media. We have experimented with the transformation of four different kinds of CeO2 NPs, in order to investigate the effects of nanoparticle size, capping agent (three were uncapped and one was PVP capped) and oxidation state (two consisted mostly of Ce4+ and two were a mix of Ce3+/Ce4+). They were exposed to a reaction solution containing KH2PO4, citric acid and ascorbic acid at pH values of 2.3, 5.5 and 12.3, and concentrations of 1mM and 5mM. The transformations were followed by UV-vis, zeta potential and XRD measurements, which were taken after 7 and 21 days, and by transmission electron microscopy after 21 days. X-ray photoelectron spectroscopy was measured at 5mM concentration after 21 days for some samples. Results show that for pH 5 and 5mM phosphate concentration, CePO4 NPs were formed. Nanoparticles that were mostly Ce4+ did not dissolve at 1mM reagent concentration, and did not produce CePO4 NPs. When PVP was present as a capping agent it proved to be an extra reducing agent, and CePO4 was found under all conditions used. This is the first paper where the transformation of CeO2 NPs in the presence of phosphate has been studied for particles with different size, shapes and capping agents, in a range of different conditions and using many different characterisation methods.


Subject(s)
Cerium/chemistry , Nanoparticles/chemistry , Phosphates/chemistry , Hydrogen-Ion Concentration , Nanoparticles/ultrastructure , Oxidation-Reduction , Particle Size
3.
Rev Sci Instrum ; 89(2): 023704, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29495818

ABSTRACT

A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

4.
Nano Lett ; 14(1): 269-76, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24341790

ABSTRACT

The effects of surface and interface on the thermodynamics of small particles require a deeper understanding. This step is crucial for the development of models that can be used for decision-making support to design nanomaterials with original properties. On the basis of experimental results for phase transitions in compressed ZnO nanoparticles, we show the limitations of classical thermodynamics approaches (Gibbs and Landau). We develop a new model based on the Ginzburg-Landau theory that requires the consideration of several terms, such as the interaction between nanoparticles, pressure gradients, defect density, and so on. This phenomenological approach sheds light on the discrepancies in the literature as it identifies several possible parameters that should be taken into account to properly describe the transformations. For the sake of clarity and standardization, we propose an experimental protocol that must be followed during high-pressure investigations of nanoparticles in order to obtain coherent, reliable data that can be used by the scientific community.


Subject(s)
Models, Chemical , Models, Molecular , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Zinc Oxide/chemistry , Compressive Strength , Computer Simulation , Energy Transfer , Phase Transition , Pressure , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...