Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 171: 104743, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33357565

ABSTRACT

Cinnamodial (CDIAL) is a drimane sesquiterpene dialdehyde found in the bark of Malagasy medicinal plants (Cinnamosma species; family Canellaceae). We previously demonstrated that CDIAL was insecticidal, antifeedant, and repellent against Aedes aegypti mosquitoes. The goal of the present study was to generate insights into the insecticidal mode of action for CDIAL, which is presently unknown. We evaluated the effects of CDIAL on the contractility of the ventral diverticulum (crop) isolated from adult female Ae. aegypti. The crop is a food storage organ surrounded by visceral muscle that spontaneously contracts in vitro. We found that CDIAL completely inhibited spontaneous contractions of the crop as well as those stimulated by the agonist 5-hydroxytryptamine. Several derivatives of CDIAL with known insecticidal activity also inhibited crop contractions. Morphometric analyses of crops suggested that CDIAL induced a tetanic paralysis that was dependent on extracellular Ca2+ and inhibited by Gd3+, a non-specific blocker of plasma membrane Ca2+ channels. Screening of numerous pharmacological agents revealed that a Ca2+ ionophore (A23187) was the only compound other than CDIAL to completely inhibit crop contractions via a tetanic paralysis. Taken together, our results suggest that CDIAL induces a tetanic paralysis of the crop by elevating intracellular Ca2+ through the activation of plasma membrane Ca2+ channels, which may explain the insecticidal effects of CDIAL against mosquitoes. Our pharmacological screening experiments also revealed the presence of two regulatory pathways in mosquito crop contractility not previously described: an inhibitory glutamatergic pathway and a stimulatory octopaminergic pathway. The latter pathway was also completely inhibited by CDIAL.


Subject(s)
Aedes , Insect Repellents , Insecticides , Animals , Benzaldehydes , Female , Insecticides/pharmacology , Mosquito Control
2.
Nature ; 529(7585): 216-20, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26735015

ABSTRACT

Endothelial cells (ECs) are plastic cells that can switch between growth states with different bioenergetic and biosynthetic requirements. Although quiescent in most healthy tissues, ECs divide and migrate rapidly upon proangiogenic stimulation. Adjusting endothelial metabolism to the growth state is central to normal vessel growth and function, yet it is poorly understood at the molecular level. Here we report that the forkhead box O (FOXO) transcription factor FOXO1 is an essential regulator of vascular growth that couples metabolic and proliferative activities in ECs. Endothelial-restricted deletion of FOXO1 in mice induces a profound increase in EC proliferation that interferes with coordinated sprouting, thereby causing hyperplasia and vessel enlargement. Conversely, forced expression of FOXO1 restricts vascular expansion and leads to vessel thinning and hypobranching. We find that FOXO1 acts as a gatekeeper of endothelial quiescence, which decelerates metabolic activity by reducing glycolysis and mitochondrial respiration. Mechanistically, FOXO1 suppresses signalling by MYC (also known as c-MYC), a powerful driver of anabolic metabolism and growth. MYC ablation impairs glycolysis, mitochondrial function and proliferation of ECs while its EC-specific overexpression fuels these processes. Moreover, restoration of MYC signalling in FOXO1-overexpressing endothelium normalizes metabolic activity and branching behaviour. Our findings identify FOXO1 as a critical rheostat of vascular expansion and define the FOXO1-MYC transcriptional network as a novel metabolic checkpoint during endothelial growth and proliferation.


Subject(s)
Endothelium, Vascular/growth & development , Endothelium, Vascular/metabolism , Forkhead Transcription Factors/metabolism , Animals , Cell Proliferation , Cell Respiration , Endothelium, Vascular/cytology , Female , Forkhead Box Protein O1 , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Glycolysis , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-myc/deficiency , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction
3.
J Cell Sci ; 128(12): 2236-48, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25956888

ABSTRACT

Autocrine VEGF is necessary for endothelial survival, although the cellular mechanisms supporting this function are unknown. Here, we show that--even after full differentiation and maturation--continuous expression of VEGF by endothelial cells is needed to sustain vascular integrity and cellular viability. Depletion of VEGF from the endothelium results in mitochondria fragmentation and suppression of glucose metabolism, leading to increased autophagy that contributes to cell death. Gene-expression profiling showed that endothelial VEGF contributes to the regulation of cell cycle and mitochondrial gene clusters, as well as several--but not all--targets of the transcription factor FOXO1. Indeed, VEGF-deficient endothelium in vitro and in vivo showed increased levels of FOXO1 protein in the nucleus and cytoplasm. Silencing of FOXO1 in VEGF-depleted cells reversed expression profiles of several of the gene clusters that were de-regulated in VEGF knockdown, and rescued both cell death and autophagy phenotypes. Our data suggest that endothelial VEGF maintains vascular homeostasis through regulation of FOXO1 levels, thereby ensuring physiological metabolism and endothelial cell survival.


Subject(s)
Apoptosis , Autocrine Communication , Autophagy , Biomarkers/metabolism , Endothelium, Vascular/pathology , Forkhead Transcription Factors/metabolism , Mitochondria/pathology , Vascular Endothelial Growth Factor A/physiology , Animals , Blotting, Western , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endothelium, Vascular/metabolism , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Humans , Hypoxia/physiopathology , Mice , Mice, Knockout , Mitochondria/metabolism , Phosphorylation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...