Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vector Borne Dis ; 57(1): 85-95, 2020.
Article in English | MEDLINE | ID: mdl-33818461

ABSTRACT

BACKGROUND & OBJECTIVES: Understanding the effect of biotic and abiotic factors on the biology and ecology of immature stages of anopheline larvae is very important in controlling malaria vector mosquitoes. Therefore, this study was focused on the monitoring of ecological factors affecting the distribution, dynamics, and density of malaria vector mosquitoes in the District of Trincomalee, Sri Lanka. METHODS: Permanent and temporary breeding habitats were identified and selected from five possible malaria sensitive sites in the district of Trincomalee. Anopheles larvae and macro-invertebrates were collected using standard methods for 16 months (from October 2013 to January 2015) and they were identified microscopically. Eight physico-chemical parameters of the breeding habitats were measured. RESULTS: Overall, a total of 4815 anopheline larvae belonging to 13 species were collected from 3,12,764 dips from 18 permanent and temporary breeding habitats. The abundance of anopheline larvae showed a significant positive correlation (p <0.05) with physico-chemical parameters in breeding habitats, such as temperature, dissolved oxygen, and turbidity. A total of 35 macro-invertebrate taxa were collected from the anopheline mosquito breeding habitats. INTERPRETATION & CONCLUSION: This study represents the first systematic update of water quality parameters, macro-invertebrate communities associated with Anopheles mosquito oviposition sites in the District of Trincomalee, Sri Lanka. Rainfall intensity and wind speed are critical meteorological factors for the distribution and abundance of malaria vectors. Knowledge generated on the ecology of Anopheles mosquitoes will help to eliminate malaria vectors in the country.


Subject(s)
Anopheles/physiology , Breeding , Ecosystem , Life Cycle Stages , Malaria/prevention & control , Meteorological Concepts , Mosquito Vectors/physiology , Animals , Anopheles/parasitology , Female , Geography , Larva/physiology , Malaria/transmission , Mosquito Vectors/parasitology , Rain , Sri Lanka , Temperature , Water Quality
2.
BMC Health Serv Res ; 18(1): 202, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29566691

ABSTRACT

BACKGROUND: In special circumstances, establishing public private partnerships for malaria elimination may achieve targets faster than the state sector acting by itself. Following the end of the separatist war in Sri Lanka in 2009, the Anti Malaria Campaign (AMC) of Sri Lanka intensified malaria surveillance jointly with a private sector partner, Tropical and Environmental Diseases and Health Associates Private Limited (TEDHA) with a view to achieving malaria elimination targets by 2014. METHODS: This is a case study on how public private partnerships can be effectively utilized to achieve malaria elimination goals. TEDHA established 50 Malaria Diagnostic Laboratories and 17 entomology surveillance sentinel sites in consultation with the AMC in areas difficult to access by government officials (five districts in two provinces affected by war). RESULTS: TEDHA screened 994,448 individuals for malaria, of which 243,867 were screened at mobile malaria clinics as compared to 1,102,054 screened by the AMC. Nine malaria positives were diagnosed by TEDHA, while the AMC diagnosed 103 malaria cases in the same districts in parallel. Over 13,000 entomological activity days were completed. Relevant information was shared with AMC and the data recorded in the health information system. CONCLUSIONS: A successful public-private partnership model for malaria elimination was initiated at a time when the health system was in disarray in war ravaged areas of Sri Lanka. This ensured a high annual blood examination rate and screening of vulnerable people in receptive areas. These were important for certification of malaria-free status which Sri Lanka eventually received in 2016.


Subject(s)
Disease Eradication/organization & administration , Malaria/prevention & control , Public-Private Sector Partnerships , Humans , Malaria/epidemiology , Organizational Case Studies , Sri Lanka/epidemiology
3.
BMC Res Notes ; 10(1): 134, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28330498

ABSTRACT

BACKGROUND: Leptospirosis is an important emerging infectious disease in Sri Lanka. Rats are the most important reservoir of Leptospira but domestic and wild mammals may also act as important maintenance or accidental hosts. In Sri Lanka, knowledge of reservoir animals of leptospires is poor. The objective of this study was to identify potential reservoir animals of Leptospira in the District of Gampaha, Sri Lanka. FINDINGS: Blood and kidney samples were collected from 38 rodents and mid-stream urine samples were randomly collected from 45 cattle and five buffaloes in the District of Gampaha. Kidney and urine samples were tested by real-time polymerase chain reaction (PCR) and serum samples were tested by the microscopic agglutination test (MAT). Of the 38 rodent kidney samples, 11% (4/38) were positive by real-time PCR. The prevalence of leptospiral carriage was 11% (3/26) and 8% (1/12) in female and male rodents, respectively. Three rodent serum samples were positive by MAT. Of the 50 cattle/buffalo urine samples tested, 10% (5/50) were positive by real-time PCR. The prevalence of leptospiral carriage was 9% (4/45) and 20% (1/5) in cattle and buffaloes, respectively. CONCLUSION: Results of PCR and MAT showed that Leptospira were present in a significant proportion of the rodents and farm animals tested in this study and suggest that these (semi-) domestic animals form an infection reservoir for Leptospira. Therefore, there is a potential zoonotic risk to public health, most notably to farmers in this area.


Subject(s)
Animal Diseases/microbiology , Disease Reservoirs/microbiology , Leptospira/physiology , Leptospirosis/microbiology , Agglutination Tests/methods , Animal Diseases/blood , Animal Diseases/urine , Animals , Buffaloes , Cattle , DNA, Bacterial/genetics , Female , Geography , Host-Pathogen Interactions , Kidney/microbiology , Kidney/pathology , Leptospira/genetics , Leptospirosis/diagnosis , Leptospirosis/epidemiology , Male , Polymerase Chain Reaction , Prevalence , Rats , Sri Lanka/epidemiology
4.
Biologicals ; 44(6): 497-502, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27707560

ABSTRACT

Leptospirosis has a major impact on health in Sri Lanka but is probably grossly under-recognized due to difficulties in clinical diagnosis and lack of diagnostic laboratory services. The objective of this study was to establish and evaluate a SYBR Green-based real-time Polymerase Chain Reaction (rt-PCR) assay for early, rapid and definitive laboratory diagnosis of leptospirosis in Sri Lanka. The rt-PCR assay was established and analytical specificity and sensitivity were determined using reference DNA samples. Evaluation of the assay for diagnosis of clinical samples was performed using two panels of serum samples obtained from 111 clinically suspected adult patients. Patients were confirmed as leptospirosis (n = 65) and non-leptospirosis (n = 30) by the Patoc - MAT. Other 16 samples gave ambiguous results. The analytical sensitivity of the rt-PCR was approximately 60 genome copies and no cross-reactivity was observed with saprophytic Leptospira spp. and other pathogenic microorganisms. Based on confirmation with Patoc-MAT on paired samples this corresponds to a diagnostic sensitivity and specificity of 67.7% (44/65) and 90.0% (27/30), respectively. This study showed that rt-PCR has the potential to facilitate rapid and definitive diagnosis of leptospirosis during early phase of infection in Sri Lanka.


Subject(s)
DNA, Bacterial , Leptospira/genetics , Leptospirosis , Real-Time Polymerase Chain Reaction/methods , Adult , DNA, Bacterial/blood , DNA, Bacterial/genetics , Female , Humans , Leptospirosis/blood , Leptospirosis/diagnosis , Leptospirosis/genetics , Male , Sri Lanka
5.
J Gen Virol ; 91(Pt 4): 1067-76, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19955565

ABSTRACT

Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n=1), India (n=2) and Malaysia (n=31). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.


Subject(s)
Chikungunya virus/classification , Base Sequence , Chikungunya virus/genetics , Evolution, Molecular , Humans , India , Molecular Sequence Data , Phylogeny , Singapore , Sri Lanka
SELECTION OF CITATIONS
SEARCH DETAIL
...