Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Curr Microbiol ; 81(6): 161, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700667

ABSTRACT

In the wake of rapid industrialization and burgeoning transportation networks, the escalating demand for fossil fuels has accelerated the depletion of finite energy reservoirs, necessitating urgent exploration of sustainable alternatives. To address this, current research is focusing on renewable fuels like second-generation bioethanol from agricultural waste such as sugarcane bagasse. This approach not only circumvents the contentious issue of food-fuel conflicts associated with biofuels but also tackles agricultural waste management. In the present study indigenous yeast strain, Clavispora lusitaniae QG1 (MN592676), was isolated from rotten grapes to ferment xylose sugars present in the hemicellulose content of sugarcane bagasse. To liberate the xylose sugars, dilute acid pretreatment was performed. The highest reducing sugars yield was 1.2% obtained at a temperature of 121 °C for 15 min, a solid-to-liquid ratio of 1:25 (% w/v), and an acid concentration of 1% dilute acid H2SO4 that was significantly higher (P < 0.001) yield obtained under similar conditions at 100 °C for 1 h. The isolated strain was statistically optimized for fermentation process by Plackett-Burman design to achieve the highest ethanol yield. Liberated xylose sugars were completely utilized by Clavispora lusitaniae QG1 (MN592676) and gave 100% ethanol yield. This study optimizes both fermentation process and pretreatment of sugarcane bagasse to maximize bioethanol yield and demonstrates the ability of isolated strain to effectively utilize xylose as a carbon source. The desirable characteristics depicted by strain Clavispora lusitaniae shows its promising utilization in management of industrial waste like sugarcane bagasse by its conversion into renewable biofuels like bioethanol.


Subject(s)
Biofuels , Cellulose , Ethanol , Fermentation , Saccharum , Saccharum/metabolism , Ethanol/metabolism , Cellulose/metabolism , Waste Management/methods , Agriculture , Xylose/metabolism , Vitis/microbiology , Hypocreales/metabolism
2.
Bioresour Bioprocess ; 11(1): 8, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38647842

ABSTRACT

Generally wastewater such agricultural runoff is considered a nuisance; however, it could be harnessed as a potential source of nutrients like nitrates and phosphates in integrated biorefinery context. In the current study, microalgae Chlorella sp. S5 was used for bioremediation of agricultural runoff and the leftover algal biomass was used as a potential source for production of biofuels in an integrated biorefinery context. The microalgae Chlorella sp. S5 was cultivated on Blue Green (BG 11) medium and a comprehensive optimization of different parameters including phosphates, nitrates, and pH was carried out to acquire maximum algal biomass enriched with high lipids content. Dry biomass was quantified using the solvent extraction technique, while the identification of nitrates and phosphates in agricultural runoff was carried out using commercial kits. The algal extracted lipids (oils) were employed in enzymatic trans-esterification for biodiesel production using whole-cell biomass of Bacillus subtilis Q4 MZ841642. The resultant fatty acid methyl esters (FAMEs) were analyzed using Fourier transform infrared (FTIR) spectroscopy and gas chromatography coupled with mass spectrometry (GC-MS). Subsequently, both the intact algal biomass and its lipid-depleted algal biomass were used for biogas production within a batch anaerobic digestion setup. Interestingly, Chlorella sp. S5 demonstrated a substantial reduction of 95% in nitrate and 91% in phosphate from agricultural runoff. The biodiesel derived from algal biomass exhibited a noteworthy total FAME content of 98.2%, meeting the quality standards set by American Society for Testing and Materials (ASTM) and European union (EU) standards. Furthermore, the biomethane yields obtained from whole biomass and lipid-depleted biomass were 330.34 NmL/g VSadded and 364.34 NmL/g VSadded, respectively. In conclusion, the findings underscore the potent utility of Chlorella sp. S5 as a multi-faceted resource, proficiently employed in a sequential cascade for treating agricultural runoff, producing biodiesel, and generating biogas within the integrated biorefinery concept.

3.
Environ Res ; 247: 118288, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38262510

ABSTRACT

Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the blaTEM gene, whereas 58.3% of isolates in meltwater possessed blaTEM and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and blaTEM (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Genes, Bacterial , Drug Resistance, Microbial/genetics , Lakes/microbiology , Metals
5.
Microorganisms ; 11(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37512851

ABSTRACT

Nematode-microbe symbiosis plays a key role in determining pathogenesis against pests. The modulation of symbiotic bacteria may affect the virulence of entomopathogenic nematodes (EPNs) and the biological management of pests. We tested the influence of asafoetida (ASF) extract on the virulence of Steinernema carpocapsae and its symbiotic bacterium, Xenorhabdus nematophila, in Pyrrhocoris apterus. A total of 100 mg of ASF killed 30% of EPNs in 48 h, while P. apterus remained unaffected. The EPNs pre-treated with 100 mg of ASF influenced P. apterus's mortality by 24-91.4% during a period of 24 to 72 h. The topical application of ASF acted as a deterrent to S. carpocapsae, lowering host invasion to 70% and delaying infectivity with 30% mortality for 168 h. Interestingly, Steinernema's symbiotic bacterium, Xenorhabdus, remained unaffected by ASF. An in vitro turbidity test containing 100 mg of ASF in a medium increased the growth rate of Xenorhabdus compared to a control. A disc diffusion assay confirmed the non-susceptibility of Xenorhabdus to ASF compared to a positive control, streptomycin. Pro-phenol oxidase (PPO) and phenol oxidase (PO) upregulation showed that ASF influences immunity, while EPN/ASF showed a combined immunomodulatory effect in P. apterus. We report that ASF modulated the virulence of S. carpocapsae but not that of its symbiotic bacterium, X. nematophila, against P. apterus.

6.
Int. microbiol ; 26(2): 309-325, May. 2023. mapas
Article in English | IBECS | ID: ibc-220224

ABSTRACT

Recently, a supraglacial lake formed as a result of a glacial lake outburst flood (GLOF) in the Dook Pal Glacier. Lake debris and meltwater samples were collected from the supraglacial lake to determine bacterial diversity. Geochemical analyses of samples showed free amino acids (FAAs), anions, cations, and heavy metals. Comparable viable bacterial counts were observed in meltwater and debris samples. Using R2A media, a total of 52 bacterial isolates were identified: 40 from debris and 12 from meltwater. The relative abundance of Gram-positive (80.8%) bacteria was greater than Gram-negative (19.2%). Molecular identification of these isolates revealed that meltwater was dominated by Firmicutes (41.6%) and Proteobacteria (41.6%), while lake debris was dominated by Firmicutes (65.0%). The isolates belonged to 14 genera with the greatest relative abundance in Bacillus. Tolerance level of isolates to salts was high. Most of the Gram-positive bacteria were eurypsychrophiles, while most of the Gram-negative bacteria were stenopsychrophiles. Gram-negative bacteria displayed a higher minimum inhibitory concentration of selected heavy metals and antibiotics than Gram-positive. This first-ever study of culturable bacteria from a freshly formed supraglacial lake improves our understanding of the bacterial diversity and antibiotic resistance released from the glaciers as a result of GLOF.(AU)


Subject(s)
Humans , Bacteria/classification , Drug Resistance, Microbial , Lakes , Floods , Waste Products , Pakistan , Polar Melting
7.
Int Microbiol ; 26(2): 309-325, 2023 May.
Article in English | MEDLINE | ID: mdl-36484912

ABSTRACT

Recently, a supraglacial lake formed as a result of a glacial lake outburst flood (GLOF) in the Dook Pal Glacier. Lake debris and meltwater samples were collected from the supraglacial lake to determine bacterial diversity. Geochemical analyses of samples showed free amino acids (FAAs), anions, cations, and heavy metals. Comparable viable bacterial counts were observed in meltwater and debris samples. Using R2A media, a total of 52 bacterial isolates were identified: 40 from debris and 12 from meltwater. The relative abundance of Gram-positive (80.8%) bacteria was greater than Gram-negative (19.2%). Molecular identification of these isolates revealed that meltwater was dominated by Firmicutes (41.6%) and Proteobacteria (41.6%), while lake debris was dominated by Firmicutes (65.0%). The isolates belonged to 14 genera with the greatest relative abundance in Bacillus. Tolerance level of isolates to salts was high. Most of the Gram-positive bacteria were eurypsychrophiles, while most of the Gram-negative bacteria were stenopsychrophiles. Gram-negative bacteria displayed a higher minimum inhibitory concentration of selected heavy metals and antibiotics than Gram-positive. This first-ever study of culturable bacteria from a freshly formed supraglacial lake improves our understanding of the bacterial diversity and antibiotic resistance released from the glaciers as a result of GLOF.


Subject(s)
Bacillus , Metals, Heavy , Lakes , Floods , Pakistan , Bacteria , Gram-Negative Bacteria/metabolism , Bacillus/metabolism , Metals, Heavy/metabolism
8.
Molecules ; 26(22)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34834128

ABSTRACT

Plants consistently synthesize and accumulate medically valuable secondary metabolites which can be isolated and clinically tested under in vitro conditions. An advancement with such important phytochemical production has been recognized and utilized as herbal drugs. Bioactive andrographolide (AGL; C20H30O5) isolated from Andrographis paniculate (AP) (Kalmegh) is a diterpenoid lactones having multifunctional medicinal properties including anti-manic, anti-inflammatory, liver, and lung protective. AGL is known for its immunostimulant activity against a variety of microbial infections thereby, regulating classical and alternative macrophage activation, Ag-specific antibody production during immune disorder therapy. In vitro studies with AGL found it to be effective against multiple tumors, neuronal disorders, diabetes, pneumonia, fibrosis, and other diverse therapeutic misadventures. Generally, virus-based diseases like ZIKA, influenza A virus subtype (H1NI), Ebola (EBOV), Dengue (DENV), and coronavirus (COVID-19) epidemics have greatly increased scientific interest and demands to develop more effective and economical immunomodulating drugs with minimal side effects. Trials and in vitro pharmacological studies with AGL and medicinally beneficial herbs might contribute to benefit the human population without using chemical-based synthetic drugs. In this review, we have discussed the possible role of AGL as a promising herbal-chemo remedy during human diseases, viral infections and as an immunity booster.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Plants, Medicinal/chemistry , Plants, Medicinal/immunology , Virus Diseases/drug therapy , Antiviral Agents/chemical synthesis , Antiviral Agents/therapeutic use , Diterpenes/chemical synthesis , Diterpenes/therapeutic use , Health , Humans , Immune System/drug effects
9.
Pathogens ; 9(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998278

ABSTRACT

Insect adipokinetic hormones (AKHs) are neuropeptides with a wide range of actions, including the control of insect energy metabolism. These hormones are also known to be involved in the insect defence system against toxins and pathogens. In this study, our aim was to demonstrate whether the application of external AKHs significantly enhances the efficacy of the entomopathogenic fungus Isaria fumosorosea in a model species (firebug Pyrrhocoris apterus) and pest species (Egyptian cotton leafworm Spodoptera littoralis and pea aphid Acyrthosiphon pisum). It was found that the co-application of Isaria with AKHs significantly enhanced insect mortality in comparison to the application of Isaria alone. The mode of action probably involves an increase in metabolism that is caused by AKHs (evidenced by the production of carbon dioxide), which accelerates the turnover of Isaria toxins produced into the infected insects. However, several species-specific differences probably exist. Intoxication by Isaria elicited the stimulation of Akh gene expression and synthesis of AKHs. Therefore, all interactions between Isaria and AKH actions as well as their impact on insect physiology from a theoretical and practical point of view need to be discussed further.

10.
J Appl Stat ; 47(9): 1652-1675, 2020.
Article in English | MEDLINE | ID: mdl-35707585

ABSTRACT

The memory-type adaptive and non-adaptive control charts are among the best control charts for detecting small-to-moderate changes in the process parameter(s). In this paper, we propose the Crosier CUSUM (CCUSUM), EWMA, adaptive CCUSUM (ACCUSUM) and adaptive EWMA (AEWMA) charts for efficiently monitoring the changes in the covariance matrix of a multivariate normal process without subgrouping. Using extensive Monte Carlo simulations, the length characteristics of these control charts are computed. It turns out that the ACCUSUM and AEWMA charts perform uniformly and substantially better than the CCUSUM and EWMA charts when detecting a range of shift sizes in the covariance matrix. Moreover, the AEWMA chart outperforms the ACCUSUM chart. A real dataset is used to explain the implementation of the proposed control charts.

11.
Insect Biochem Mol Biol ; 117: 103293, 2020 02.
Article in English | MEDLINE | ID: mdl-31809784

ABSTRACT

Juvenile hormones (JHs) regulate important processes in insects, such as postembryonic development and reproduction. In the hemolymph of Lepidoptera, these lipophilic sesquiterpenic hormones are transported from their site of synthesis to target tissues by high affinity carriers, the juvenile hormone binding proteins (JHBPs). Lepidopteran JHBPs belong to a recently uncovered, yet very ancient family of proteins sharing a common lipid fold (TULIP domain) and involved in shuttling various lipid ligands. One important, but poorly understood aspect of JHs action, is the mechanism of hormone transfer to or through the plasma membranes of target cells. Since many membrane-active peptides and proteins, such as the pore-forming bacterial toxins, are activated by low pH or interaction with phospholipid membranes, we have examined the effect of these factors on JH binding by JHBPs. The affinity of Bombyx mori and Manduca sexta JHBPs for JH III was determined by the DCC assay, equilibrium dialysis, and isothermal titration calorimetry, and found to be greatly reduced at low pH, in agreement with previous observations. Loss of binding was accompanied by changes in fluorescence and near-UV CD spectra, indicating significant changes in protein structure in the environment of aromatic residues. The apparent dissociation rate constant (koff) of the JHBP-JH III complex was greater at acidic pH, suggesting that low pH favors ligand release by opening of the binding pocket. The affinity of recombinant B. mori JHBP (rBmJHBP) was also decreased in the presence of anionic phospholipid vesicles. Measurements of steady-state fluorescence anisotropy with the lipophilic probe TMA-DPH demonstrated that rBmJHBP specifically interacts with anionic membranes. These results suggest the existence of a collisional mechanism for ligand release that may be important for delivery of JHs to the target cells, and could be relevant to the function of related members of this emerging family of lipid-transport proteins.


Subject(s)
Carrier Proteins/genetics , Insect Proteins/genetics , Moths/genetics , Animals , Biological Transport , Bombyx/genetics , Bombyx/growth & development , Bombyx/metabolism , Carrier Proteins/metabolism , Insect Proteins/metabolism , Ligands , Lipid Metabolism , Moths/growth & development , Moths/metabolism
12.
Article in English | MEDLINE | ID: mdl-31783176

ABSTRACT

The adipokinetic hormones (AKHs) are known to be involved in insect immunity, thus their role in the cockroach Periplaneta americana infected with the entomopathogenic fungus Isaria fumosorosea was examined in this study. The application of I. fumosorosea resulted in a significant increase in both Akh gene expression and AKH peptide levels. Further, co-application of I. fumosorosea with Peram-CAH-II significantly enhanced cockroach mortality compared with the application of I. fumosorosea alone. The mechanism of AKH action could involve metabolic stimulation, which was indicated by a significant increase in carbon dioxide production; this effect can increase the turnover and thus efficacy of toxins produced by I. fumosorosea in the cockroach's body. I. fumosorosea treatment resulted in a significant decrease in haemolymph nutrients (carbohydrates and lipids), but co-application with Peram-CAH-II restored control level of lipids or even further increased the level of carbohydrates. Such nutritional abundance could enhance the growth and development of I. fumosorosea. Further, both I. fumosorosea and Peram-CAH-II probably affected oxidative stress: I. fumosorosea alone curbed the activity of catalase in the cockroach's gut, but co-application with Peram-CAH-II stimulated it. Interestingly, the hormone alone had no effect on catalase activity. Taken together, the results of the present study demonstrate the interactions between the fungus and AKH activity; understanding this relationship could provide insight into AKH action and may have practical implications for insect pest control in the future.


Subject(s)
Insect Control/methods , Insect Hormones/pharmacology , Oligopeptides/pharmacology , Periplaneta/drug effects , Pyrrolidonecarboxylic Acid/analogs & derivatives , Animals , Carbon Dioxide/metabolism , Catalase/metabolism , Oxidative Stress , Pyrrolidonecarboxylic Acid/pharmacology
13.
Article in English | MEDLINE | ID: mdl-31644954

ABSTRACT

This study describes defense functions of the insect neuropeptide sericotropin, which is recognized as an agent that stimulates silk production in some lepidopteran larvae. Sericotropin, expressed in brain tissue of the wax moth Galleria mellonella in all developmental stages, is not expressed in silk glands, indicating its tissue specificity. Fluorescence microscopy confirmed the presence of sericotropin in the brain-subesophageal complex being predominantly and densely distributed under the plasmatic membrane and in axonal parts of neurons. Injection of venom from Habrobracon hebetor and topical application of the entomopathogenic nematode (EPN) Steinernema carpocapsae with symbiotic bacteria Xenorhabdus spp. into or onto G. mellonella larvae resulted in upregulation of the sericotropin gene and peptide, suggesting a role for sericotropin in defense and immunity. Accordingly, two synthetic fragments of sericotropin killed entomotoxic Xenorhabdus spp. bacteria in a disc diffusion antimicrobial test. Further, total metabolism, monitored by carbon dioxide production, significantly decreased after application of either venom or EPN, probably because of muscle impairment by the venom and serious cell damage caused by EPN, especially in the midgut. Both venom and EPN upregulated expression of genes encoding antimicrobial peptides gallerimycin and galiomicin in Galleria brain; however, they downregulated prophenoloxidase and phenoloxidase activity in hemolymph. These results suggest that sericotropin is a multifunctional peptide that plays an important role in G. mellonella defense and immunity.


Subject(s)
Larva/parasitology , Moths/parasitology , Nematoda/physiology , Neuropeptides/metabolism , Wasp Venoms/toxicity , Animals , Female , Gene Expression Regulation/drug effects , Host-Parasite Interactions/immunology , Larva/drug effects , Larva/metabolism , Male , Moths/drug effects , Moths/metabolism , Neuropeptides/genetics
14.
AMB Express ; 9(1): 67, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31102037

ABSTRACT

Synergistic combinations of various antimicrobial agents are considered ideal strategies in combating clinical and multidrug resistant (MDR) infections. In this study, antibacterial potential of Jatropha curcas crude seed extracts, seed oil, commercially available antibiotics, and their combinations were investigated for their synergistic effect against clinical, MDR and ATCC bacterial strains by agar well diffusion assay. Methanolic extracts remained more active against Staphylococcus aureus (ATCC), with zone of inhibition (ZOI) of 21 mm, than clinical and methicillin-resistant S. aureus (MRSA) strains (ZOI range ~ 15.0-17.0 mm). Molecular docking demonstrated that beta-monolaurin from methanolic extract exhibited greater affinity conformation for UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine (MurF) ligase's active pocket with binding energy of -7.3 kcal/mol. Moxifloxacin exhibited greater activity against Escherichia coli (ATCC) (ZOI ~ 50.0 mm), followed by ofloxacin against Pseudomonas chlororaphis (47.3 mm), moxifloxacin against P. monteilii (47 mm), P. aeruginosa (46.3 mm) and MRSA2 (46 mm) and ofloxacin against S. aureus (ATCC) strains (45.7 mm). Methanolic extract in combination with rifampicin showed the highest synergism against MRSA strains, A. baumannii, E. coli, E. faecalis, S. aureus, and P. aeruginosa, A. baumannii (MDR strain), P. chlororaphis, E. coli ATCC25922 and S. aureus ATCC25923. In combinations, moxifloxacin exhibited the highest antagonism. The methanolic, n-hexane, aqueous extracts and seed oil in various combinations with antibiotics showed 44.71, 32.94, 9.41 and 25.88% synergism, respectively. The current study showed that potency of antibiotics was improved when screened in combination with J. curcas seed's components, supporting the drug combination strategy to combat antibacterial resistance.

15.
Int J Biol Macromol ; 131: 557-563, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30880058

ABSTRACT

Pasting and functional properties of water chestnut starch (WCS) alone and mixture of WCS and xanthan gum (XG) were determined by addition of NaCl (0.5, 1, and 2%) at fixed water chestnut starch (5%) and xanthan gum (0.3%) concentration. Results indicated that presence of NaCl had a significant impact on functional and pasting properties of both WCS alone and WCS - XG mixture. Pasting temperature of WCS and WCS - XG mixture increased linearly with increasing salt content, whereas a reverse trend was observed in peak viscosity and sets back in case of WCS alone. It was found that addition of NaCl decreased the swelling power of WCS alone, while it increased in case of WCS - XG mixture. The water absorption of WCS - XG improved drastically by the addition of NaCl while a rapid decline in syneresis was observed with WCS - XG mixture. The transparency of both WCS and WCS - XG mixture were found to be increased after the addition of NaCl.


Subject(s)
Chemical Phenomena , Eleocharis/chemistry , Polysaccharides, Bacterial/chemistry , Sodium Chloride/chemistry , Starch/chemistry , Chemical Phenomena/drug effects , Polysaccharides, Bacterial/ultrastructure , Sodium Chloride/pharmacology , Solubility , Spectrum Analysis , Starch/isolation & purification , Starch/ultrastructure , Temperature
16.
Article in English | MEDLINE | ID: mdl-28257925

ABSTRACT

The effect of Habrobracon hebetor venom and the role of the adipokinetic hormone (AKH) in poisoned adult females of the firebug Pyrrhocoris apterus were studied 24 and 48h after treatments. Venom application elicited total neuromuscular paralysis in firebugs, but the co-application of venom and Pyrap-AKH significantly reduced paralysis (up to 3.2 times) compared to the application of venom only. Although the mechanisms of their action are unknown, both agents might affect neuromuscular junctions. Venom application significantly increased the expression of both P. apterus Akh genes (Pyrap-Akh 5.4 times and Peram-Cah-II 3.6 times), as well as the level of AKHs in the central nervous system (2.5 times) and haemolymph (3.0 times). In the haemolymph, increased AKH levels might have led to the mobilization of stored lipids, which increased 1.9 times, while the level of free carbohydrates remained unchanged. Total metabolism, monitored by carbon dioxide production, significantly declined in paralysed P. apterus individuals (1.4 times and 1.9 times, 24 and 48h after the treatment, respectively), probably because of a malfunction of the muscular system. The results suggest an active role of AKH in the defence mechanism against the stress elicited by neuromuscular paralysis, and the possible involvement of this hormone in neuronal/neuromuscular signalling.


Subject(s)
Central Nervous System/drug effects , Heteroptera/drug effects , Insect Hormones/agonists , Neuropeptides/physiology , Oligopeptides/agonists , Paralysis/veterinary , Pyrrolidonecarboxylic Acid/analogs & derivatives , Up-Regulation/drug effects , Wasp Venoms/toxicity , Allostasis , Animals , Biomarkers/metabolism , Central Nervous System/metabolism , Czech Republic , Dose-Response Relationship, Drug , Energy Metabolism/drug effects , Female , Hemolymph/drug effects , Hemolymph/metabolism , Heteroptera/physiology , Injections , Insect Hormones/genetics , Insect Hormones/metabolism , Insect Hormones/physiology , Kinetics , Neuromuscular Junction/drug effects , Neuromuscular Junction/physiology , Neuropeptides/agonists , Neuropeptides/analysis , Neuropeptides/genetics , Neuropeptides/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Oligopeptides/physiology , Paralysis/chemically induced , Pyrrolidonecarboxylic Acid/agonists , Thorax , Wasp Venoms/antagonists & inhibitors , Wasp Venoms/isolation & purification
17.
J Insect Physiol ; 98: 347-355, 2017 04.
Article in English | MEDLINE | ID: mdl-28254268

ABSTRACT

The role of adipokinetic hormone (AKH) in the firebug Pyrrhocoris apterus adults infected by the entomopathogenic nematode (EPN) Steinernema carpocapsae was examined in this study. It was found that co-application of EPN and AKH enhanced firebug mortality about 2.5 times within 24h (from 20 to 51% in EPN vs. EPN+AKH treatments), and resulted in metabolism intensification, as carbon dioxide production in firebugs increased about 2.1 and 1.6times compared to control- and EPN-treated insects, respectively. Accordingly, firebugs with reduced expression of AKH receptors showed a significantly lower mortality (by 1.6 to 2.9-folds), and lower general metabolism after EPN+AKH treatments. In addition, EPN application increased Akh gene expression in the corpora cardiaca (1.6times), AKH level in the corpora cardiaca (1.3times) and haemolymph (1.7times), and lipid and carbohydrate amounts in the haemolymph. Thus, the outcomes of the present study demonstrate involvement of AKH into the anti-stress reaction elicited by the nematobacterial infection. The exact mechanism by which AKH acts is unknown, but results suggested that the increase of metabolism and nutrient amounts in haemolymph might play a role.


Subject(s)
Heteroptera/metabolism , Heteroptera/parasitology , Insect Hormones/metabolism , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Rhabditida/physiology , Animals , Corpora Allata/metabolism , Hemolymph/metabolism , Male , Organ Specificity , Pyrrolidonecarboxylic Acid/metabolism
18.
BMC Oral Health ; 15(1): 136, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26531223

ABSTRACT

BACKGROUND: The purpose of this systematic review is to identify and review the orthodontic literature with regards to assessing possible differences in canine retraction rate and the amount of antero-posterior anchorage (AP) loss during maxillary canine retraction, using conventional brackets (CBs) and self-ligating brackets (SLBs). METHODS: An electronic search without time or language restrictions was undertake in September 2014 in the following electronic databases: The Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE via OVID, EMBASE via OVID, Web of science. We also searched the reference lists of relevant articles. Quality assessment of the included articles was performed. Two of the authors were responsible for study selection, validity assessment and data extraction. RESULTS: Six studies met the inclusion criteria, including 2 randomized controlled trials and 4 control clinical studies. One was assessed as being at low risk of bias. Five trials were assessed as being at moderate risk of bias. The meta-analysis from 6 eligible studies showed that no statistically significant difference was observed between the 2 groups in the rate of canine retraction and loss of antero-posterior anchorage of the molars. CONCLUSION: There is some evidence from this review that both brackets showed the same rate of canine retraction and loss of antero-posterior anchorage of the molars. The results of the present systematic review should be viewed with caution due to the presence of uncontrolled interpreted factors in the included studies. Further well-designed and conducted randomized controlled trials are required, to facilitate comparisons of the results.


Subject(s)
Cuspid , Orthodontic Brackets , Humans , Orthodontic Wires , Tooth Movement Techniques/methods
19.
BMC Oral Health ; 15: 115, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26427531

ABSTRACT

BACKGROUND: To test the null hypothesis that there is no difference in the apical root resorption seen after orthodontic treatment with the conventional brackets and the self-ligating brackets. METHODS: Pre-treatment and post-treatment periapical radio-graphs of 70 patients, (35 treated with the Damon3 0.022" bracket and 35 with the 0.022" 3 M bracket) were studied. The long cone paralleling technique was used for all the radio-graphs. Any image distortion between the pre-treatment and post-treatment radio-graph was calculated and compensated for by using the crown length measurements, on the assumption that the crown length remains unaltered during the treatment period. Quantitative measurements of crown and root lengths for the maxillary and the mandibular central and lateral incisors were compared. Means and standard deviations for the percentage root resorption per tooth group were calculated. A paired t-test and non paired t-test analysis was performed to determine whether there was an appliance, treatment time, or initial age effect on the amount of root resorption seen after treatment. RESULT: No statistically significant difference in root resorption between the two appliance systems was found. The patient's degree of root resorption were graded as grade 1 and grade 2 in the self-ligating group which is more than the conventional group. CONCLUSIONS: There was no significant difference in root resorption between self-ligating brackets and conventional brackets in severe crowding incisors subjects.


Subject(s)
Orthodontic Brackets/classification , Radiography, Dental/methods , Root Resorption/diagnostic imaging , Tooth Movement Techniques/instrumentation , Adolescent , Alloys/chemistry , Child , Dental Alloys/chemistry , Female , Follow-Up Studies , Humans , Incisor/diagnostic imaging , Longitudinal Studies , Male , Malocclusion, Angle Class I/therapy , Orthodontic Anchorage Procedures/instrumentation , Orthodontic Wires , Retrospective Studies , Stainless Steel/chemistry , Tooth Apex/diagnostic imaging , Tooth Crown/diagnostic imaging , Tooth Root/diagnostic imaging
20.
Insect Biochem Mol Biol ; 56: 36-49, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25484200

ABSTRACT

Mated Drosophila melanogaster females show a decrease in mating receptivity, enhanced ovogenesis, egg-laying and activation of juvenile hormone (JH) production. Components in the male seminal fluid, especially the sex peptide ACP70A stimulate these responses in females. Here we demonstrate that ACP70A is involved in the down-regulation of female sex pheromones and hydrocarbon (CHC) production. Drosophila G10 females which express Acp70A under the control of the vitellogenin gene yp1, produced fewer pheromones and CHCs. There was a dose-dependent relationship between the number of yp1-Acp70A alleles and the reduction of these compounds. Similarly, a decrease in CHCs and diene pheromones was observed in da > Acp70A flies that ubiquitously overexpress Acp70A. Quantitative-PCR experiments showed that the expression of Acp70A in G10 females was the same as in control males and 5 times lower than in da > Acp70A females. Three to four days after injection with 4.8 pmol ACP70A, females from two different strains, exhibited a significant decrease in CHC and pheromone levels. Similar phenotypes were observed in ACP70A injected flies whose ACP70A receptor expression was knocked-down by RNAi and in flies which overexpress ACP70A N-terminal domain. These results suggest that the action of ACP70A on CHCs could be a consequence of JH activation. Female flies exposed to a JH analog had reduced amounts of pheromones, whereas genetic ablation of the corpora allata or knock-down of the JH receptor Met, resulted in higher amounts of both CHCs and pheromonal dienes. Mating had negligible effects on CHC levels, however pheromone amounts were slightly reduced 3 and 4 days post copulation. The physiological significance of ACP70A on female pheromone synthesis is discussed.


Subject(s)
Drosophila Proteins/pharmacology , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Juvenile Hormones/metabolism , Peptides/pharmacology , Animals , Copulation/physiology , Corpora Allata/metabolism , Down-Regulation , Drosophila melanogaster/genetics , Female , Hydrocarbons/metabolism , Male , Phenotype , RNA Interference , Real-Time Polymerase Chain Reaction , Reproduction/physiology , Sex Attractants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...