Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Immunol Allergy Clin North Am ; 43(1): 1-15, 2023 02.
Article in English | MEDLINE | ID: mdl-36410996

ABSTRACT

Building an immune system is a monumental task critical to the survival of the fetus and newborn. A functional fetal immune system must complement the maternal immune system in handling in utero infection; abstain from damaging non-self-reactions that would compromise the materno-fetal interface; mobilize in response to infection and equip mucosal tissues for pathogen exposure at birth. There is growing appreciation that immune cells also have noncanonical roles in development and specifically may contribute to tissue morphogenesis. In this review we detail how hematopoietic and lymphoid organs jointly establish cellular constituents of the immune system; how these constituents are organized in 2 mucosal sites-gut and lung-where early life immune function has long-term consequences for health; and how exemplar diseases of prematurity and inborn errors of immunity reveal dominant pathways in prenatal immunity.


Subject(s)
Fetus , Immune System , Infant, Newborn , Pregnancy , Female , Humans
2.
Stem Cell Reports ; 17(7): 1699-1713, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35750043

ABSTRACT

Conjunctival epithelial cells, which express viral-entry receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), constitute the largest exposed epithelium of the ocular surface tissue and may represent a relevant viral-entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of basal, suprabasal, and superficial epithelial cells, and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single-cell RNA sequencing (RNA-seq), with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome expression, a productive infection did not ensue. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust autocrine and paracrine NF-κB activity, without activation of antiviral interferon signalling. Collectively, these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies and conjunctival transplantation.


Subject(s)
COVID-19 , Epithelial Cells/metabolism , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , SARS-CoV-2
3.
Nat Commun ; 12(1): 7092, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876592

ABSTRACT

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNß or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.


Subject(s)
Epithelial Cells/virology , Interferon Type I/immunology , Interferons/immunology , Nasal Mucosa/virology , SARS-CoV-2/physiology , Antiviral Agents/immunology , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/immunology , Humans , Immunity, Innate , Kinetics , Nasal Mucosa/cytology , Nasal Mucosa/immunology , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Viral Tropism , Virus Replication/drug effects , Interferon Lambda
4.
Lancet ; 397(10290): 2195-2211, 2021 06 05.
Article in English | MEDLINE | ID: mdl-34090606

ABSTRACT

Cystic fibrosis is a monogenic disease considered to affect at least 100 000 people worldwide. Mutations in CFTR, the gene encoding the epithelial ion channel that normally transports chloride and bicarbonate, lead to impaired mucus hydration and clearance. Classical cystic fibrosis is thus characterised by chronic pulmonary infection and inflammation, pancreatic exocrine insufficiency, male infertility, and might include several comorbidities such as cystic fibrosis-related diabetes or cystic fibrosis liver disease. This autosomal recessive disease is diagnosed in many regions following newborn screening, whereas in other regions, diagnosis is based on a group of recognised multiorgan clinical manifestations, raised sweat chloride concentrations, or CFTR mutations. Disease that is less easily diagnosed, and in some cases affecting only one organ, can be seen in the context of gene variants leading to residual protein function. Management strategies, including augmenting mucociliary clearance and aggressively treating infections, have gradually improved life expectancy for people with cystic fibrosis. However, restoration of CFTR function via new small molecule modulator drugs is transforming the disease for many patients. Clinical trial pipelines are actively exploring many other approaches, which will be increasingly needed as survival improves and as the population of adults with cystic fibrosis increases. Here, we present the current understanding of CFTR mutations, protein function, and disease pathophysiology, consider strengths and limitations of current management strategies, and look to the future of multidisciplinary care for those with cystic fibrosis.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis , Disease Management , Genetic Therapy , Mucociliary Clearance , Bicarbonates , Chlorides , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Exocrine Pancreatic Insufficiency/mortality , Humans , Life Expectancy , Mutation/genetics
5.
J Biol Chem ; 296: 100650, 2021.
Article in English | MEDLINE | ID: mdl-33839155

ABSTRACT

Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.


Subject(s)
Acid Ceramidase/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/microbiology , Epithelial Cells/microbiology , Interferon Regulatory Factors/metabolism , Lung/microbiology , Pseudomonas Infections/microbiology , Acid Ceramidase/genetics , Animals , Ceramides/metabolism , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Interferon Regulatory Factors/genetics , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Pseudomonas Infections/genetics , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/isolation & purification , Sphingosine/metabolism
6.
J Cyst Fibros ; 20(5): 737-741, 2021 09.
Article in English | MEDLINE | ID: mdl-32950411

ABSTRACT

Nontuberculous mycobacteria (NTM) infection is of growing concern in cystic fibrosis (CF). UK CF Registry data were analyzed from 2016 to 2018. Prevalence of infection stabilized in the pediatric age-group during this period but remained substantially higher than in 2010. Allergic bronchopulmonary aspergillosis and Pseudomonas aeruginosa infection were associated with NTM infection.


Subject(s)
Cystic Fibrosis/microbiology , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/microbiology , Adolescent , Child , Child, Preschool , Female , Humans , Male , Prevalence , United Kingdom/epidemiology
7.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L288-L300, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33296276

ABSTRACT

Cystic fibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressive and life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe the clinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individuals harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made in primary human bronchial epithelial cultures (HBEs) and Xenopus oocytes. Molecular properties of R751L-CFTR were investigated in the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotype associated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and associated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function in Xenopus oocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall, R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR. This is the first report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological properties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly, inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to alternative non-CFTR factors, which require further investigation.


Subject(s)
Bronchi , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Mutation, Missense , Sodium Chloride/metabolism , Amino Acid Substitution , Animals , Bronchi/metabolism , Bronchi/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Male , Xenopus laevis
8.
J Cyst Fibros ; 20(1): 25-30, 2021 01.
Article in English | MEDLINE | ID: mdl-33309057

ABSTRACT

BACKGROUND: The presence of co-morbidities, including underlying respiratory problems, has been identified as a risk factor for severe COVID-19 disease. Information on the clinical course of SARS-CoV-2 infection in children with cystic fibrosis (CF) is limited, yet vital to provide accurate advice for children with CF, their families, caregivers and clinical teams. METHODS: Cases of SARS-CoV-2 infection in children with CF aged less than 18 years were collated by the CF Registry Global Harmonization Group across 13 countries between 1 February and 7 August 2020. RESULTS: Data on 105 children were collated and analysed. Median age of cases was ten years (interquartile range 6-15), 54% were male and median percentage predicted forced expiratory volume in one second was 94% (interquartile range 79-104). The majority (71%) of children were managed in the community during their COVID-19 illness. Out of 24 children admitted to hospital, six required supplementary oxygen and two non-invasive ventilation. Around half were prescribed antibiotics, five children received antiviral treatments, four azithromycin and one additional corticosteroids. Children that were hospitalised had lower lung function and reduced body mass index Z-scores. One child died six weeks after testing positive for SARS-CoV-2 following a deterioration that was not attributed to COVID-19 disease. CONCLUSIONS: SARS-CoV-2 infection in children with CF is usually associated with a mild illness in those who do not have pre-existing severe lung disease.


Subject(s)
COVID-19/complications , COVID-19/therapy , Cystic Fibrosis/complications , Cystic Fibrosis/therapy , Adolescent , COVID-19/epidemiology , Child , Cystic Fibrosis/epidemiology , Disease Progression , Female , Humans , Male , Prognosis , Risk Factors , SARS-CoV-2
9.
Am J Respir Crit Care Med ; 202(8): 1133-1145, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32569477

ABSTRACT

Rationale: In cystic fibrosis the major cause of morbidity and mortality is lung disease characterized by inflammation and infection. The influence of sphingolipid metabolism is poorly understood with a lack of studies using human airway model systems.Objectives: To investigate sphingolipid metabolism in cystic fibrosis and the effects of treatment with recombinant human acid ceramidase on inflammation and infection.Methods: Sphingolipids were measured using mass spectrometry in fully differentiated cultures of primary human airway epithelial cells and cocultures with Pseudomonas aeruginosa. In situ activity assays, Western blotting, and quantitative PCR were used to investigate function and expression of ceramidase and sphingomyelinase. Effects of treatment with recombinant human acid ceramidase on sphingolipid profile and inflammatory mediator production were assessed in cell cultures and murine models.Measurements and Main Results: Ceramide is increased in cystic fibrosis airway epithelium owing to differential function of enzymes regulating sphingolipid metabolism. Sphingosine, a metabolite of ceramide with antimicrobial properties, is not upregulated in response to P. aeruginosa by cystic fibrosis airway epithelia. Tumor necrosis factor receptor 1 is increased in cystic fibrosis epithelia and activates NF-κB signaling, generating inflammation. Treatment with recombinant human acid ceramidase, to decrease ceramide, reduced both inflammatory mediator production and susceptibility to infection.Conclusions: Sphingolipid metabolism is altered in airway epithelial cells cultured from people with cystic fibrosis. Treatment with recombinant acid ceramidase ameliorates the two pivotal features of cystic fibrosis lung disease, inflammation and infection, and thus represents a therapeutic approach worthy of further exploration.


Subject(s)
Acid Ceramidase/metabolism , Acid Ceramidase/pharmacology , Cystic Fibrosis/drug therapy , Pneumonia/diagnosis , Pseudomonas Infections/diagnosis , Sphingolipids/metabolism , Adolescent , Alveolar Epithelial Cells/drug effects , Animals , Blotting, Western/methods , Cells, Cultured , Child , Cystic Fibrosis/diagnosis , Humans , Inflammation/diagnosis , Inflammation/drug therapy , Mass Spectrometry/methods , Mice , Pneumonia/drug therapy , Polymerase Chain Reaction/methods , Pseudomonas Infections/drug therapy , Sensitivity and Specificity , Severity of Illness Index , Young Adult
10.
J Vis Exp ; (148)2019 06 13.
Article in English | MEDLINE | ID: mdl-31259916

ABSTRACT

In recent years, the importance of mucosal surface pH in the airways has been highlighted by its ability to regulate airway surface liquid (ASL) hydration, mucus viscosity and activity of antimicrobial peptides, key parameters involved in innate defense of the lungs. This is of primary relevance in the field of chronic respiratory diseases such as cystic fibrosis (CF) where these parameters are dysregulated. While different groups have studied ASL pH both in vivo and in vitro, their methods report a relatively wide range of ASL pH values and even contradictory findings regarding any pH differences between non-CF and CF cells. Furthermore, their protocols do not always provide enough details in order to ensure reproducibility, most are low throughput and require expensive equipment or specialized knowledge to implement, making them difficult to establish in most labs. Here we describe a semi-automated fluorescent plate reader assay that enables the real-time measurement of ASL pH under thin film conditions that more closely resemble the in vivo situation. This technique allows for stable measurements for many hours from multiple airway cultures simultaneously and, importantly, dynamic changes in ASL pH in response to agonists and inhibitors can be monitored. To achieve this, the ASL of fully differentiated primary human airway epithelial cells (hAECs) are stained overnight with a pH-sensitive dye in order to allow for the reabsorption of the excess fluid to ensure thin film conditions. After fluorescence is monitored in the presence or absence of agonists, pH calibration is performed in situ to correct for volume and dye concentration. The method described provides the required controls to make stable and reproducible ASL pH measurements, which ultimately could be used as a drug discovery platform for personalized medicine, as well as adapted to other epithelial tissues and experimental conditions, such as inflammatory and/or host-pathogen models.


Subject(s)
Cystic Fibrosis/diagnosis , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , Cells, Cultured , Cystic Fibrosis/pathology , Humans , Hydrogen-Ion Concentration , Reproducibility of Results
11.
Expert Opin Pharmacother ; 18(13): 1363-1371, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28730885

ABSTRACT

INTRODUCTION: Cystic fibrosis (CF) is one of the most common genetically-acquired life-limiting conditions worldwide. The underlying defect is dysfunction of the cystic fibrosis transmembrane-conductance regulator (CFTR) which leads to progressive lung disease and other multi-system effects. Around 10% of people with CF have a class I nonsense mutation that leads to production of shortened CFTR due to a premature termination codon (PTC). Areas covered: We discuss the discovery of the small-molecule drug ataluren, which in vitro has been shown to allow read-through of PTCs and facilitate synthesis of full-length protein. We review clinical studies that have been performed involving ataluren in CF. Early-phase short-term cross-over studies showed improvement in nasal potential difference. A follow-up phase III randomised controlled trial did not show a significant difference for the primary outcome of lung function, however a post-hoc analysis suggested possible benefit in patients not receiving tobramycin. A further randomised controlled trial in patients not receiving tobramycin has been reported as showing no benefit but has not yet been published in full peer-reviewed form. Expert opinion: A small-molecule approach to facilitate read-through of PTCs in nonsense mutations makes intuitive sense. However, at present there is no high-quality evidence of clinical efficacy for ataluren in people with CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/biosynthesis , Cystic Fibrosis/drug therapy , Drug Discovery , Oxadiazoles/therapeutic use , Codon, Nonsense/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacokinetics , Randomized Controlled Trials as Topic , Treatment Outcome
12.
Pflugers Arch ; 469(9): 1073-1091, 2017 09.
Article in English | MEDLINE | ID: mdl-28455748

ABSTRACT

Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.


Subject(s)
Bicarbonates/metabolism , Casein Kinase II/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Chlorides/metabolism , Nasal Mucosa/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cyclic AMP/metabolism , Epithelial Cells/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Mice
15.
Thorax ; 71(3): 284-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26719229

ABSTRACT

Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF.


Subject(s)
Bicarbonates/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis , Disease Management , Homeostasis/physiology , Respiratory Mucosa/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/physiopathology , Cystic Fibrosis/therapy , Humans , Ion Transport , Mucociliary Clearance/physiology
16.
Genome Med ; 7: 101, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26403534

ABSTRACT

Cystic fibrosis is the most common genetically determined, life-limiting disorder in populations of European ancestry. The genetic basis of cystic fibrosis is well established to be mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for an apical membrane chloride channel principally expressed by epithelial cells. Conventional approaches to cystic fibrosis care involve a heavy daily burden of supportive treatments to combat lung infection, help clear airway secretions and maintain nutritional status. In 2012, a new era of precision medicine in cystic fibrosis therapeutics began with the licensing of a small molecule, ivacaftor, which successfully targets the underlying defect and improves CFTR function in a subgroup of patients in a genotype-specific manner. Here, we review the three main targeted approaches that have been adopted to improve CFTR function: potentiators, which recover the function of CFTR at the apical surface of epithelial cells that is disrupted in class III and IV genetic mutations; correctors, which improve intracellular processing of CFTR, increasing surface expression, in class II mutations; and production correctors or read-through agents, which promote transcription of CFTR in class I mutations. The further development of such approaches offers great promise for future therapeutic strategies in cystic fibrosis.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Aminophenols/therapeutic use , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Molecular Targeted Therapy , Quinolones/therapeutic use
17.
Clin Immunol ; 124(2): 165-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17572155

ABSTRACT

Recombinase activating genes 1/2 (RAG1/2) deficiency, critical to initiate gene rearrangement encoding lymphocyte receptors, causes T-B- severe combined immunodeficiency (SCID) and Omenn syndrome (OS), characterised by erythroderma, hepatosplenomegaly, lymphadenopathy, activated, clonal T cell expansions with restricted TCRVbeta family usage, and opportunistic infection. Many features of OS resemble graft-versus-host disease (GvHD). Frequency of GvHD-associated cytokine gene polymorphisms (CGPs) with OS was investigated to explain phenotypic differences between T-B- SCID and OS. Allele frequencies of IFNgamma T874A, IFNgamma-R1, TNFalphad microsatellites, IL-10 promoter region C592A and A1082G, IL-4 C-590T, IL-6 G-174C, IL-4R Q+576R, IFNgamma-R1 T-56C, TNFalphaRII 196 M/R single-nucleotide polymorphisms and IL-1Ra intron 1 VNTR were examined in 33 OS and 23 SCID patients. No significant differences in allele frequencies were found between the groups, and no trends identified. The mechanisms determining the OS or T-B-NK+ SCID phenotype remain to be determined.


Subject(s)
Cytokines/genetics , DNA-Binding Proteins/genetics , Genes, RAG-1/immunology , Graft vs Host Disease/genetics , Homeodomain Proteins/genetics , Nuclear Proteins/genetics , Severe Combined Immunodeficiency/genetics , B-Lymphocytes/immunology , Cytokines/immunology , DNA-Binding Proteins/immunology , Genes, RAG-1/genetics , Graft vs Host Disease/immunology , Homeodomain Proteins/immunology , Humans , Nuclear Proteins/immunology , Polymorphism, Genetic , Severe Combined Immunodeficiency/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...