Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 23(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38005525

ABSTRACT

The design of high-performance complementary meta-resonators for microwave sensors featuring high sensitivity and consistent evaluation of dielectric materials is challenging. This paper presents the design and implementation of a novel complementary resonator with high sensitivity for dielectric substrate characterization based on permittivity and thickness. A complementary crossed arrow resonator (CCAR) is proposed and integrated with a fifty-ohm microstrip transmission line. The CCAR's distinct geometry, which consists of crossed arrow-shaped components, allows for the implementation of a resonator with exceptional sensitivity to changes in permittivity and thickness of the material under test (MUT). The CCAR's geometrical parameters are optimized to resonate at 15 GHz. The CCAR sensor's working principle is explained using a lumped-element equivalent circuit. The optimized CCAR sensor is fabricated using an LPKF protolaser on a 0.762-mm thick dielectric substrate AD250C. The MUTs with dielectric permittivity ranging from 2.5 to 10.2 and thickness ranging from 0.5 mm to 1.9 mm are used to investigate the properties and calibrate the proposed CCAR sensor. A two-dimensional calibration surface is developed using an inverse regression modelling approach to ensure precise and reliable measurements. The proposed CCAR sensor is distinguished by its high sensitivity of 5.74%, low fabrication cost, and enhanced performance compared to state-of-the-art designs, making it a versatile instrument for dielectric characterization.

2.
Sci Rep ; 13(1): 14823, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684301

ABSTRACT

Modern microwave devices are designed to fulfill stringent requirements pertaining to electrical performance, which requires, among others, a meticulous tuning of their geometry parameters. When moving up in frequency, physical dimensions of passive microwave circuits become smaller, making the system performance increasingly susceptible to manufacturing tolerances. In particular, inherent inaccuracy of fabrication processes affect the fundamental operating parameters, such as center frequency or bandwidth, which is especially troublesome for narrow-band structures, including notch filters. The ability to quantify the effects of tolerances, and-even more-to account for these in the design process, are instrumental in making the designs more reliable, and to increase the likelihood that adequate operation is ensured despite manufacturing errors. This paper proposes a simple yet computationally efficient and reliable procedure for statistical analysis and yield optimization of resonator-based notch filters. Our methodology involves feature-based surrogate models that can be established using a handful of training data points, and employed for rapid evaluation of the circuit fabrication yield. Furthermore, a yield optimization procedure is developed, which iteratively sets up a sequence of feature-based models, constructed within local domains relocated along the optimization path, and uses them as predictors to find a robust (maximum yield) design at a low computational cost. The presented approach has been demonstrated using two complementary split ring resonator (CSRR)-based notch filters. The cost of statistical design is about a hundred of EM simulations of the respective filter, with yield evaluation reliability corroborated through EM-based Monte Carlo analysis.

3.
Sensors (Basel) ; 23(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36679841

ABSTRACT

This paper presents the design, optimization, and calibration of multivariable resonators for microwave dielectric sensors. An optimization technique for the circular complementary split ring resonator (CC-SRR) and square complementary split ring resonator (SC-SRR) is presented to achieve the required transmission response in a precise manner. The optimized resonators are manufactured using a standard photolithographic technique and measured for fabrication tolerance. The fabricated sensor is presented for the high-resolution characterization of dielectric substrates and oil samples. A three-dimensional dielectric container is attached to the sensor and acts as a pool for the sample under test (SUT). In the presented technique, the dielectric substrates and oil samples can interact directly with the electromagnetic (EM) field emitted from the resonator. For the sake of sensor calibration, a relation between the relative permittivity of the dielectric samples and the resonant frequency of the sensor is established in the form of an inverse regression model. Comparisons with state-of-the-art sensors indicate the superiority of the presented design in terms of oil characterization reliability. The significant technical contributions of this work include the employment of the rigorous optimization of geometry parameters of the sensor, leading to its superior performance, and the development and application of the inverse-model-based calibration procedure.


Subject(s)
Microwaves , Reproducibility of Results , Calibration , Equipment Design
4.
Sensors (Basel) ; 20(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235529

ABSTRACT

In this paper, an extremely sensitive microwave sensor is designed based on a complementary symmetric S shaped resonator (CSSSR) to evaluate dielectric characteristics of low-permittivity material. CSSSR is an artificial structure with strong and enhanced electromagnetic fields, which provides high sensitivity and a new degree of freedom in sensing. Electromagnetic simulation elucidates the effect of real relative permittivity, real relative permeability, dielectric and magnetic loss tangents of the material under test (MUT) on the resonance frequency and notch depth of the sensor. Experiments are performed at room temperature using low-permittivity materials to verify the concept. The proposed design provides differential sensitivity between 102% to 95% as the relative permittivity of MUT varies from 2.1 to 3. The percentage error between simulated and measured results is less than 0.5%. The transcendental equation has been established by measuring the change in the resonance frequency of the fabricated sensor due to interaction with the MUT.

5.
Radiol Res Pract ; 2014: 258954, 2014.
Article in English | MEDLINE | ID: mdl-25132992

ABSTRACT

Objective. To evaluate the technical success, safety, and outcome of endovascular embolization procedure in management of visceral artery pseudoaneurysms. Materials and Methods. 46 patients were treated for 53 visceral pseudoaneurysms at our institution. Preliminary diagnostic workup in all cases was performed by contrast enhanced abdominal CT scan and/or duplex ultrasound. In all patients, embolization was performed as per the standard departmental protocol. For data collection, medical records and radiology reports of all patients were retrospectively reviewed. Technical success, safety, and outcome of the procedure were analyzed. Results. Out of 46 patients, 13 were females and 33 were males. Mean patient age was 44.79 ± 13.9 years and mean pseudoaneurysm size was 35 ± 19.5 mm. Technical success rate for endovascular visceral pseudoaneurysm coiling was 93.47% (n = 43). Complication rate was 6.52% (n = 3). Followup was done for a mean duration of 21 ± 1.6 months (0.5-69 months). Complete resolution of symptoms or improvement in clinical condition was seen in 36 patients (80%) out of those 45 in whom procedure was technically successful. Conclusion. Results of embolization of visceral artery pseudoaneurysms with coils at our center showed high success rate and good short term outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...