Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 11386, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059731

ABSTRACT

This study aimed to clarify the role of glypican-1 and PECAM-1 in shear-induced nitric oxide production in endothelial cells. Atomic force microscopy pulling was used to apply force to glypican-1 and PECAM-1 on the surface of human umbilical vein endothelial cells and nitric oxide was measured using a fluorescent reporter dye. Glypican-1 pulling for 30 min stimulated nitric oxide production while PECAM-1 pulling did not. However, PECAM-1 downstream activation was necessary for the glypican-1 force-induced response. Glypican-1 knockout mice exhibited impaired flow-induced phosphorylation of eNOS without changes to PECAM-1 expression. A cooperation mechanism for the mechanotransduction of fluid shear stress to nitric oxide production was elucidated in which glypican-1 senses flow and phosphorylates PECAM-1 leading to endothelial nitric oxide synthase phosphorylation and nitric oxide production.


Subject(s)
Endothelium, Vascular/metabolism , Glypicans/metabolism , Nitric Oxide/biosynthesis , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Animals , Endothelium, Vascular/cytology , Glypicans/genetics , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Knockout , Microscopy, Atomic Force , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Protein Binding , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...