Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 114(5): 110475, 2022 09.
Article in English | MEDLINE | ID: mdl-36064074

ABSTRACT

Salmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected. RNA-seq was performed after challenging the chicken with Salmonella Typhimurium. Comparative differential expression results showed that following infection, a total of 3153 genes and 1787 genes were differentially expressed in the liver and spleen, respectively. The genes that were differentially expressed included interleukins, cytokines, NOS2, Avß-defensins, toll-like receptors, and other immune-related gene families. Most of the genes and signaling pathways involved in the innate and adaptive immune responses against bacterial infection were significantly enriched in the Kashmir faverolla. Pathway analysis revealed that most of the enriched pathways were MAPK signaling pathway, NOD-like receptor signaling pathway, TLR signaling pathway, PPAR signaling pathway, endocytosis, etc. Surprisingly some immune-related genes like TLRs were upregulated in the susceptible chicken breed. On postmortem examination, the resistant birds showed small lesions in the liver compared to large necrotic lesions in susceptible birds. The pathological manifestations and RNA sequencing results suggest a balancing link between resistance and infection tolerance in Kashmir faverolla. Here we also developed an online Poultry Infection Database (https://skuastk.org/pif/index.html), the first publicly available gene expression resource for disease resistance in chickens. The available database not only shows the data for gene expression in chicken tissues but also provides quick search, visualization and download capacity.


Subject(s)
Chickens , Poultry Diseases , Animals , Chickens/genetics , Cytokines/genetics , Defensins/genetics , Disease Resistance/genetics , Gene Expression , NLR Proteins/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Poultry/genetics , Poultry Diseases/genetics , RNA-Seq , Salmonella/genetics , Sequence Analysis, RNA , Toll-Like Receptors/genetics
2.
Vet Anim Sci ; 17: 100262, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35856004

ABSTRACT

Noncommunicable diseases such as cardiovascular disease, obesity, diabetes, and cancer now outnumber all other health ailments in humans globally due to abrupt changes in lifestyle following the industrial revolution. The industrial revolution has also intensified livestock farming, resulting in an increased demand for productivity and stressed animals. The livestock industry faces significant challenges from a projected sharp increase in global food and high animal protein demand. Nutrition genomics holds great promise for the future as its advances have opened up a whole new world of disease understanding and prevention. Nutrigenomics is the study of the interactions between genes and diet. It investigates molecular relationships between nutrients and genes to identify how even minor modifications could potentially alter animal and human health/performance by using techniques like proteomics, transcriptomics, metabolomics, and lipidomics. Dietary modifications mostly studied in livestock focus mainly on health and production traits through protein, fat, mineral, and vitamin supplementation changes. Nutrigenomics meticulously selects nutrients for fine-tuning the expression of genes that match animal/human genotypes for better health, productivity, and the environment. As a step forward, nutrigenomics integrates nutrition, molecular biology, genomics, bioinformatics, molecular medicine, and epidemiology to better understand the role of food as an epigenetic factor in the occurrence of these diseases. This review aims to provide a comprehensive overview of the fundamental concepts, latest advances, and studies in the field of nutrigenomics, emphasizing the interaction of diet with gene expression, and how it relates to human and animal health along with its human-animal interphase.

3.
BMC Genomics ; 23(1): 176, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246027

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse roles in many biological processes including mammary gland development. However, little is known about their roles in the bovine lactation process. RESULTS: To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized. Transcriptome data from three Kashmiri and three Jersey cattle throughout their lactation stages were utilized for differential expression analysis. At each stage (early, mid and late) three samples were taken from each breed. A total of 45 differentially expressed lncRNAs were identified between the three stages of lactation. The differentially expressed lncRNAs were found co-expressed with genes involved in the milk synthesis processes such as GPAM, LPL, and ABCG2 indicating their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes of differentially expressed lncRNAs indicated that 27 and 48 pathways were significantly enriched between the three stages of lactation in Kashmiri and Jersey respectively, including mTOR signaling, PI3K-Akt signaling, and RAP1 signaling pathways. These pathways are known to play key roles in lactation biology and mammary gland development. CONCLUSIONS: Expression profiles of lncRNAs across different lactation stages in Jersey and Kashmiri cattle provide a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate understanding of the role of lncRNAs in bovine lactation biology.


Subject(s)
Milk , RNA, Long Noncoding , Animals , Cattle/genetics , Epithelial Cells/metabolism , Female , Lactation/genetics , Lactation/metabolism , Mammary Glands, Animal/metabolism , Milk/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome
4.
Hum Vaccin Immunother ; 17(7): 1897-1909, 2021 07 03.
Article in English | MEDLINE | ID: mdl-33577374

ABSTRACT

The coronavirus disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created havoc worldwide. Due to the non-availability of any vaccine or drugs against COVID-19, immunotherapies involving convalescent plasma, immunoglobulins, antibodies (monoclonal or polyclonal), and the use of immunomodulatory agents to enhance immunity are valuable alternative options. Cell-based therapies including natural killer cells, T cells, stem cells along with cytokines and toll-like receptors (TLRs) based therapies are also being exploited potentially against COVID-19. Future research need to strengthen the field of developing effective immunotherapeutics and immunomodulators with a thrust of providing appropriate, affordable, convenient, and cost-effective prophylactic and treatment regimens to combat global COVID-19 crisis that has led to a state of medical emergency enforcing entire countries of the world to devote their research infrastructure and manpower in tackling this pandemic.


Subject(s)
COVID-19 , Coronavirus Infections , COVID-19/therapy , Humans , Immunization, Passive , Immunotherapy , SARS-CoV-2 , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...