Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Pract Oncol Radiother ; 27(2): 360-370, 2022.
Article in English | MEDLINE | ID: mdl-36299381

ABSTRACT

Background: This study aimed to evaluate the target volume and dose accuracy in intrafraction cases using 4-dimensional imaging modalities and an in-house dynamic thorax phantom. Intrafraction motion can create errors in the definition of target volumes, which can significantly affect the accuracy of radiation delivery. Motion management using 4-dimensional modalities is required to reduce the risk. Materials and methods: Two variations in both breathing amplitude and target size were applied in this study. From these variations, internal target volume (ITVs) contoured in 10 phases of 4D-CT (ITV10), average intensity projection (AIP), and mid-ventilation (Mid-V) images were reconstructed from all 4D-CT datasets as reference images. Free-breathing (FB), augmentation free-breathing (Aug-FB), and static images were also acquired using the 3D-CT protocol for comparisons. In dose evaluations, the 4D-CBCT modality was applied before irradiation to obtain position correction. Then, the dose was evaluated with Gafchromic film EBT3. Results: The ITV10, AIP, and Mid-V provide GTVs that match the static GTV. The AIP and Mid-V reference images allowed reductions in ITVs and PTVs without reducing the range of target movement areas compared to FB and Aug-FB images with varying percentages in the range of 29.17% to 48.70%. In the dose evaluation, the largest discrepancies between the measured and planned doses were 10.39% for the FB images and 9.21% for the Aug-FB images. Conclusion: The 4D-CT modality can enable accurate definition of the target volume and reduce the PTV. Furthermore, 4D-CBCT provides localization images during registration to facilitate position correction and accurate dose delivery.

SELECTION OF CITATIONS
SEARCH DETAIL
...