Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38581631

ABSTRACT

This study addresses the pressing challenge of inefficient waste management practices within the Rajshahi City Corporation (RCC), Bangladesh. Despite rapid urbanization and escalating waste generation rates, RCC struggles with diverse waste disposal practices, limited supervision, irregular waste collection schedules, and inadequate disposal infrastructure. In this context, this study examines the possible improvements that could be made by combining the Internet of Things (IoT), artificial intelligence (AI), and Android application to improve waste management methods in the RCC. The study's foundation is a vast amount of information gathered from residents, with particular attention paid to waste disposal methods, the role of the local government, the frequency of waste collection, and public attitudes toward waste management. The results point to a complicated waste management environment with a range of waste disposal practices, little supervision, irregular waste collection, and insufficient disposal methods. The importance of RCC in waste management is emphasized, highlighting the need for proactive measures including effective monitoring, constant waste collection, and routine drain cleaning. Additionally, it is suggested that combining IoT, AI, and Android technology is a possible way to improve waste management procedures. These technologies have the potential to increase productivity, lessen their negative effects on the environment, and produce cleaner, more sustainable urban environments.

2.
J Nanosci Nanotechnol ; 18(1): 645-650, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29768890

ABSTRACT

Surface modification is necessary to decrease graphene's (GN) stacking process and increase its advantageous properties. In this study, the effects of acid treatment and grinding processes on the structural integrity of GN have been studied. Morphological and structural characteristics of modified GN were investigated by field emission scanning electron microscopy, transmission electron microscopy, gas Pycnometer, particle size analyzer, X-ray diffractometer, UV-Vis spectroscopy and thermal conductivity measurement system which expose some strong evidences of the effects of purification and grinding process on GN nanoparticles in order to get GN based better nanofluid dispersed in water which gives 1.66% and 3.38% enhancement of thermal conductivity at 20 °C and at 40 °C respectively compared to that of DW in this experiment.

3.
J Nanosci Nanotechnol ; 18(3): 1730-1740, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448652

ABSTRACT

This study presents the forced convective heat transfer of a nanofluid consisting of distilled water and different weight concentrations (1 wt% and 2 wt%) of Al2O3 nanoparticles flowing in a vertical shell and tube heat exchanger under counter flow and laminar flow regime with certain constant heat flaxes (at 20 °C, 30 °C, 40 °C and 50 °C). The Al2O3 nanoparticles of about 50 nm diameter are used in the present study. Stability of aqueous Al2O3 nanofluids, TEM, thermal conductivity, temperature differences, heat transfer rate, T-Q diagrams, LMTD and convective heat transfer coefficient are investigated experimentally. Experimental results emphasize the substantial enhancement of heat transfer due to the Al2O3 nanoparticles presence in the nanofluid. Heat transfer rate for distilled water and aqueous nanofluids are calculated after getting an efficient setup which shows 19.25% and 35.82% enhancement of heat transfer rate of 1 wt% and 2 wt% aqueous Al2O3 nanofluids as compared to that of distilled water. Finally, the analysis shows that though there are 27.33% and 59.08% enhancement of 1 wt% Al2O3 and 2 wt% Al2O3 respectively as compared to that of distilled water at 30 °C, convective heat transfer coefficient decreases with increasing heat flux of heated fluid in this experimental setup.

4.
Phytomedicine ; 31: 1-9, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28606510

ABSTRACT

BACKGROUND: The compound, 1'-S-1'-acetoxychavicol acetate (ACA), isolated from the rhizomes of a Malaysian ethno-medicinal plant, Alpinia conchigera Griff. (Zingiberaceae), was previously shown to have potential in vivo antitumour activities. In the development of a new drug entity, potential interactions of the compound with the cytochrome P450 superfamily metabolizing enzymes need to be ascertain. PURPOSE: The concomitant use of therapeutic drugs may cause potential drug-drug interactions by decreasing or increasing plasma levels of the administered drugs, leading to a suboptimal clinical efficacy or a higher risk of toxicity. Thus, evaluating the inhibitory potential of a new chemical entity, and to clarify the mechanism of inhibition and kinetics in the various CYP enzymes is an important step to predict drug-drug interactions. STUDY DESIGN: This study was designed to assess the potential inhibitory effects of Alpinia conchigera Griff. rhizomes extract and its active constituent, ACA, on nine c-DNA expressed human cytochrome P450s (CYPs) enzymes using fluorescent CYP inhibition assay. METHODS/RESULTS: The half maximal inhibitory concentration (IC50) of Alpinia conchigera Griff. rhizomes extract and ACA was determined for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5. A. conchigera extract only moderately inhibits on CYP3A4 (IC50 = 6.76 ± 1.88µg/ml) whereas ACA moderately inhibits the activities of CYP1A2 (IC50 = 4.50 ± 0.10µM), CYP2D6 (IC50 = 7.50 ± 0.17µM) and CYP3A4 (IC50 = 9.50 ± 0.57µM) while other isoenzymes are weakly inhibited. In addition, mechanism-based inhibition studies reveal that CYP1A2 and CYP3A4 exhibited non-mechanism based inhibition whereas CYP2D6 showed mechanism-based inhibition. Lineweaver-Burk plots depict that ACA competitively inhibited both CYP1A2 and CYP3A4, with a Ki values of 2.36 ± 0.03 µM and 5.55 ± 0.06µM, respectively, and mixed inhibition towards CYP2D6 with a Ki value of 4.50 ± 0.08µM. Further, molecular docking studies show that ACA is bound to a few key amino acid residues in the active sites of CYP1A2 and CYP3A4, while one amino residue of CYP2D6 through predominantly Pi-Pi interactions. CONCLUSION: Overall, ACA may demonstrate drug-drug interactions when co-administered with other therapeutic drugs that are metabolized by CYP1A2, CYP2D6 or CYP3A4 enzymes. Further in vivo studies, however, are needed to evaluate the clinical significance of these interactions.


Subject(s)
Alpinia/chemistry , Benzyl Alcohols/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Benzyl Alcohols/chemistry , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...