Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 829: 154547, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35302026

ABSTRACT

The Ganges-Brahmaputra-Meghna (GBM) delta is one of the world's largest deltas. It is currently experiencing high rates of relative sea-level rise of about 5 mm/year, reflecting anthropogenic climate change and land subsidence. This is expected to accelerate further through the 21st Century, so there are concerns that the GBM delta will be progressively submerged. In this context, a core question is: can sedimentation on the delta surface maintain its elevation relative to sea level? This research seeks to answer this question by applying a two-dimensional flow and morphological model which is capable of handling dynamic interactions between the river and floodplain systems and simulating floodplain sedimentation under different flow-sediment regimes and anthropogenic interventions. We find that across a range of flood frequencies and adaptation scenarios (including the natural polder-free state), the retained volume of sediment varies between 22% and 50% of the corresponding sediment input. This translates to average rates of sedimentation on the delta surface of 5.5 mm/yr to 7.5 mm/yr. Hence, under present conditions, sedimentation associated with quasi-natural conditions can exceed current rates of relative sea-level rise and potentially create new land mass. These findings highlight that encouraging quasi-natural conditions through the widespread application of active sediment management measures has the potential to promote more sustainable outcomes for the GBM delta. Practical measures to promote include tidal river management, and appropriate combinations of cross-dams, bandal-like structures, and dredging.


Subject(s)
Climate Change , Rivers , Floods , Rivers/chemistry , Sea Level Rise
2.
Sci Total Environ ; 682: 405-416, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31128360

ABSTRACT

From the 1960s, embankments have been constructed in south western coastal region of Bangladesh to provide protection against flooding, but the success of the polder programme is disputed. We present analysis of floods during the years 1988-2012, diagnosing whether the floods were attributable to monsoonal precipitation (pluvial flooding), high upstream river discharge into the tidal delta (fluvio-tidal flooding), or cyclone-induced storm surges. We find that pluvial flooding was the most frequent, but typically resulted in less flooded area (11.44% of the region on average) compared with the other forms of flooding. The greatest area of inundation (48% of total area) occurring in 2001 as a consequence of fluvio-tidal and surge flooding, whilst cyclone Sidr in 2007 flooded 35% of the area. We modelled these different forms of inundation to estimate what flooding might have been had the polders not been constructed. For the 'no embankment' counter-factual scenario, our model demonstrated that because of a combination of subsidence and inadequate drainage, construction of the polders has increased the pluvial flooded area by 6.5% on average (334 km2). However, during the 1998 fluvio-tidal flood, the embankments protected an estimated 54% of the area from flooding. During the cyclone Sidr storm surge event, embankment failure in several polders and pluvial inundation resulted in 35% area inundation, otherwise, the total inundation would have been 18% area. We conclude that whilst polders have provided protection against storm surges and fluvio-tidal events of moderate severity, they have exacerbated more frequent pluvial flooding and promoted potential flooding impacts during the most extreme storm surges.

3.
Sci Total Environ ; 658: 818-829, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30583177

ABSTRACT

The IPCC fifth assessment report envisions risk of climate-related impacts as an outcome of the interaction of climate-related hazards with the vulnerability and the exposure of human and natural systems. This approach relies heavily on human perception, via expert opinions. As experts decide appropriate placement of an indicator in any of the exposure, sensitivity or adaptive capacity domains, several risk maps can potentially be created for the same study area. There is thus some degree of uncertainty in selecting the most appropriate and representative risk map from the several alternatives created by IPCC methods. On the other hand, Fuzzy Synthetic Evaluation (FSE) method, when used to assess risk, can handle this uncertainty much better, as there is no need to distribute indicators among different domains. In FSE, a specific indicator can either increase (positive sign) or decrease (negative sign) a risk, following a simple binary logic. This does not require any expert opinion and thus is free from subjective perception. In this study, risk maps are generated and compared by applying FSE method and two IPCC methods, as outlined in the third and fifth assessments (TAR and AR5). A variant of AR5 risk map is created by interchanging one indicator from the exposure domain to the sensitivity domain. It is found that risk zones are created with statistically significant difference when different IPCC methods are applied. This makes it uncertain to judge a specific risk map by a specific IPCC method as a true risk map. This uncertainty does not exist in FSE method as there is only one risk map where indicators are placed with certainty by following a simple binary logic for a known hazard domain. Hence, this risk map may be considered as the true risk map for the given set of indicators.

4.
Sci Total Environ ; 643: 1054-1064, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30189522

ABSTRACT

The physical sustainability of deltaic environments is very much dependent on the volume of water and sediment coming from upstream and the way these fluxes recirculate within the delta system. Based on several past studies, the combined mean annual sediment load of the Ganges-Brahmaputra-Meghna (GBM) systems has previously been estimated to vary from 1.0 to 2.4 BT/year which can be separated into components flowing from the Ganges (260 to 680 MT/year) and Brahmaputra (390 to 1160 MT/year). Due to very limited data and small contribution of the Meghna system (6-12 MT/year) to the total sediment flux of the GBM system, the data of the Meghna is not considered in the analysis assuming the sediment flux from GB system as the sediment flux of GBM. However, in this paper our analysis of sediment concentration data (1960-2008) collected by Bangladesh Water Development Board shows that the sediment flux is much lower: 150 to 590 MT/year for the Ganges versus 135 to 615 MT/year for the Brahmaputra, with an average total flux around 500 MT/year. Moreover, the new analysis provides a clear indication that the combined sediment flux delivered through these two major river systems is following a declining trend. In most of the planning documents in Bangladesh, the total sediment flux is assumed as a constant value of around 1 billion tons, while the present study indicates that the true value may be around 50% lower than this (with an average decreasing trend of around 10 MT/year).

5.
Clim Change ; 139(2): 279-291, 2016.
Article in English | MEDLINE | ID: mdl-32355374

ABSTRACT

The Sundarbans mangrove ecosystem, located in India and Bangladesh, is recognized as a global priority for biodiversity conservation and is an important provider of ecosystem services such as numerous goods and protection against storm surges. With global mean sea-level rise projected as up to 0.98 m or greater by 2100 relative to the baseline period (1985-2005), the Sundarbans - mean elevation presently approximately 2 m above mean sea-level - is under threat from inundation and subsequent wetland loss; however the magnitude of loss remains unclear. We used remote and field measurements, geographic information systems and simulation modelling to investigate the potential effects of three sea-level rise scenarios on the Sundarbans within coastal Bangladesh. We illustrate how the Sea Level Affecting Marshes Model (SLAMM) is able to reproduce the observed area losses for the period 2000-2010. Using this calibrated model and assuming that mean sea-level is a better proxy than the SLAMM assumed mean lower low water for Mangrove area delineation, the estimated mangrove area net losses (relative to year 2000) are 81-178 km2, 111-376 km2 and 583-1393 km2 for relative sea-level rise scenarios to 2100 of 0.46 m, 0.75 m and 1.48 m, respectively and net subsidence of ±2.5 mm/year. These area losses are very small (<10 % of present day area) and significantly smaller than previous research has suggested. Our simulations also suggest that erosion rather than inundation may remain the dominant loss driver to 2100 under certain scenarios of sea-level rise and net subsidence. Only under the highest scenarios does inundation due to sea-level rise become the dominant loss process.

SELECTION OF CITATIONS
SEARCH DETAIL
...