Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Molecules ; 27(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35566180

ABSTRACT

Autophagy is a cellular homeostatic process by which cells degrade and recycle their malfunctioned contents, and impairment in this process could lead to Parkinson's disease (PD) pathogenesis. Dioscin, a steroidal saponin, has induced autophagy in several cell lines and animal models. The role of dioscin-mediated autophagy in PD remains to be investigated. Therefore, this study aims to investigate the hypothesis that dioscin-regulated autophagy and autophagy-related (ATG) proteins could protect neuronal cells in PD via reducing apoptosis and enhancing neurogenesis. In this study, the 1-methyl-4-phenylpyridinium ion (MPP+) was used to induce neurotoxicity and impair autophagic flux in a human neuroblastoma cell line (SH-SY5Y). The result showed that dioscin pre-treatment counters MPP+-mediated autophagic flux impairment and alleviates MPP+-induced apoptosis by downregulating activated caspase-3 and BCL2 associated X, apoptosis regulator (Bax) expression while increasing B-cell lymphoma 2 (Bcl-2) expression. In addition, dioscin pre-treatment was found to increase neurotrophic factors and tyrosine hydroxylase expression, suggesting that dioscin could ameliorate MPP+-induced degeneration in dopaminergic neurons and benefit the PD model. To conclude, we showed dioscin's neuroprotective activity in neuronal SH-SY5Y cells might be partly related to its autophagy induction and suppression of the mitochondrial apoptosis pathway.


Subject(s)
1-Methyl-4-phenylpyridinium , Parkinson Disease , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Diosgenin/analogs & derivatives , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/metabolism
2.
Br J Pharmacol ; 179(1): 23-45, 2022 01.
Article in English | MEDLINE | ID: mdl-34528272

ABSTRACT

Lewy bodies that contain aggregated α-synuclein in dopamine neurons are the main culprit for neurodegeneration in Parkinson's disease. However, mitochondrial dysfunction has a well-established and prominent role in the pathogenesis of Parkinson's disease. The exact mechanism by which α-synuclein causes dopamine neuronal loss is unclear. Recent evidence suggests that aggregated α-synuclein localises in the mitochondria contributes to oxidative stress-mediated apoptosis in neurons. Therefore, the involvement of aggregated α-synuclein in mitochondrial dysfunction-mediated neuronal loss has made it an emerging drug target for the treatment of Parkinson's disease. However, the exact mechanism by which α-synuclein permeabilises through the mitochondrial membrane and affects the electron transport chain remains under investigation. In the present study, we describe mitochondria-α-synuclein interactions and how α-synuclein aggregation modulates mitochondrial homeostasis in Parkinson's disease pathogenesis. We also discuss recent therapeutic interventions targeting α-synuclein aggregation that may help researchers to design novel therapeutic treatments for Parkinson's disease.


Subject(s)
Dopaminergic Neurons , Mitochondria , Parkinson Disease , Protein Aggregation, Pathological , alpha-Synuclein , Apoptosis , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Oxidative Stress , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , alpha-Synuclein/metabolism
3.
Nutrients ; 13(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34836313

ABSTRACT

Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.


Subject(s)
Aging , Dietary Supplements , Inflammation/diet therapy , Nutrients , Humans , Immunosenescence , Inflammation/prevention & control , Patents as Topic
4.
Front Cell Dev Biol ; 9: 683459, 2021.
Article in English | MEDLINE | ID: mdl-34485280

ABSTRACT

Ageing is an inevitable event in the lifecycle of all organisms, characterized by progressive physiological deterioration and increased vulnerability to death. Ageing has also been described as the primary risk factor of most neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal lobar dementia (FTD). These neurodegenerative diseases occur more prevalently in the aged populations. Few effective treatments have been identified to treat these epidemic neurological crises. Neurodegenerative diseases are associated with enormous socioeconomic and personal costs. Here, the pathogenesis of AD, PD, and other neurodegenerative diseases has been presented, including a summary of their known associations with the biological hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered intercellular communications. Understanding the central biological mechanisms that underlie ageing is important for identifying novel therapeutic targets for neurodegenerative diseases. Potential therapeutic strategies, including the use of NAD+ precursors, mitophagy inducers, and inhibitors of cellular senescence, has also been discussed.

5.
Int J Mol Sci ; 22(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34445484

ABSTRACT

In response to diverse pathogenic and danger signals, the cytosolic activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing (3)) inflammasome complex is a critical event in the maturation and release of some inflammatory cytokines in the state of an inflammatory response. After activation of the NLRP3 inflammasome, a series of cellular events occurs, including caspase 1-mediated proteolytic cleavage and maturation of the IL-1ß and IL-18, followed by pyroptotic cell death. Therefore, the NLRP3 inflammasome has become a prime target for the resolution of many inflammatory disorders. Since NLRP3 inflammasome activation can be triggered by a wide range of stimuli and the activation process occurs in a complex, it is difficult to target the NLRP3 inflammasome. During the activation process, various post-translational modifications (PTM) of the NLRP3 protein are required to form a complex with other components. The regulation of ubiquitination and deubiquitination of NLRP3 has emerged as a potential therapeutic target for NLRP3 inflammasome-associated inflammatory disorders. In this review, we discuss the ubiquitination and deubiquitination system for NLRP3 inflammasome activation and the inhibitors that can be used as potential therapeutic agents to modulate the activation of the NLRP3 inflammasome.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cytosol/metabolism , Gene Expression Regulation/drug effects , Humans , Molecular Targeted Therapy , Ubiquitination/drug effects
6.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925146

ABSTRACT

The proton-activated G protein-coupled receptor (GPCR) 4 (GPR4) is constitutively active at physiological pH, and GPR4 knockout protected dopaminergic neurons from caspase-dependent mitochondria-associated apoptosis. This study explored the role of GPR4 in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD). In mice, subchronic MPTP administration causes oxidative stress-induced apoptosis in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), resulting in motor deficits. NE52-QQ57, a selective GPR4 antagonist, reduced dopaminergic neuronal loss in MPTP-treated mice, improving motor and memory functions. MPTP and NE52-QQ57 co-treatment in mice significantly decreased pro-apoptotic marker Bax protein levels and increased anti-apoptotic marker Bcl-2 protein levels in the SNpc and striatum. MPTP-induced caspase 3 activation and poly (ADP-ribose) polymerase (PARP) cleavage significantly decreased in the SNpc and striatum of mice co-treated with NE52-QQ57. MPTP and NE52-QQ57 co-treatment significantly increased tyrosine hydroxylase (TH)-positive cell numbers in the SNpc and striatum compared with MPTP alone. NE52-QQ57 and MPTP co-treatment improved rotarod and pole test-assessed motor performance and improved Y-maze test-assessed spatial memory. Our findings suggest GPR4 may represent a potential therapeutic target for PD, and GPR4 activation is involved in caspase-mediated neuronal apoptosis in the SNpc and striatum of MPTP-treated mice.


Subject(s)
Parkinson Disease/metabolism , Receptors, G-Protein-Coupled/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Apoptosis/genetics , Brain/metabolism , Caspase 3/metabolism , Caspases/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/metabolism , Parkinson Disease/physiopathology , Pars Compacta/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
7.
Clin Sci (Lond) ; 135(1): 231-257, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33443284

ABSTRACT

General control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification. Besides, GCN5 regulates a wide range of biological events such as gene regulation, cellular proliferation, metabolism and inflammation. Imbalance in the GCN5 activity has been reported in many disorders such as cancer, metabolic disorders, autoimmune disorders and neurological disorders. Therefore, unravelling the role of GCN5 in different diseases progression is a prerequisite for both understanding and developing novel therapeutic agents of these diseases. In this review, we have discussed the structural features, the biological function of GCN5 and the mechanical link with the diseases associated with its imbalance. Moreover, the present GCN5 modulators and their limitations will be presented in a medicinal chemistry perspective.


Subject(s)
Chromatin Assembly and Disassembly , Epigenesis, Genetic , Histone Acetyltransferases/metabolism , Histones/metabolism , Acetylation , Animals , Antineoplastic Agents/pharmacology , Chromatin Assembly and Disassembly/drug effects , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Humans , Lysine , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein Domains , Protein Processing, Post-Translational , Structure-Activity Relationship , Substrate Specificity
8.
Cells ; 10(1)2021 01 14.
Article in English | MEDLINE | ID: mdl-33466587

ABSTRACT

Microglia are brain-dwelling macrophages and major parts of the neuroimmune system that broadly contribute to brain development, homeostasis, ageing and injury repair in the central nervous system (CNS). Apart from other brain macrophages, they have the ability to constantly sense changes in the brain's microenvironment, functioning as housekeepers for neuronal well-being and providing neuroprotection in normal physiology. Microglia use a set of genes for these functions that involve proinflammatory cytokines. In response to specific stimuli, they release these proinflammatory cytokines, which can damage and kill neurons via neuroinflammation. However, alterations in microglial functioning are a common pathophysiology in age-related neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's and prion diseases, as well as amyotrophic lateral sclerosis, frontotemporal dementia and chronic traumatic encephalopathy. When their sentinel or housekeeping functions are severely disrupted, they aggravate neuropathological conditions by overstimulating their defensive function and through neuroinflammation. Several pathways are involved in microglial functioning, including the Trem2, Cx3cr1 and progranulin pathways, which keep the microglial inflammatory response under control and promote clearance of injurious stimuli. Over time, an imbalance in this system leads to protective microglia becoming detrimental, initiating or exacerbating neurodegeneration. Correcting such imbalances might be a potential mode of therapeutic intervention in neurodegenerative diseases.


Subject(s)
Aging/metabolism , Brain/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Signal Transduction , Aging/pathology , Brain/pathology , Disease Progression , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/therapy , Microglia/pathology , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Neurons/pathology
9.
Plants (Basel) ; 9(12)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322185

ABSTRACT

Lindera obtusiloba (LO) BLUME from the genus Lindera (Lauraceae) is a medicinal herb traditionally used in Southeast Asian countries. Indigenously, extracts of different parts of the plant have been used to improve blood circulation and treat allergy, inflammation, rheumatism, and liver diseases. LO is a rich source of therapeutically beneficial antioxidative phytochemicals, such as flavonoids, butenolides, lignans and neolignans. Moreover, recent studies have unravelled the pharmacological properties of several newly found active constituents of LO, such as anti-inflammatory antioxidants (+)-syringaresinol, linderin A, anti-atherosclerotic antioxidant (+)-episesamin, anti-melanogenic antioxidants quercitrin and afzelin, cytotoxic 2-(1-methoxy-11-dodecenyl)-penta-2,4-dien-4-olide, (2Z,3S,4S)-2-(11-dodecenylidene)-3-hydroxy-4-methyl butanolide, anti-allergic koaburaside, (6-hydroxyphenyl)-1-O-beta-d-glucopyranoside and 2,6-dimethoxy-4-hydroxyphenyl-1-O-beta-d-glucopyranoside and the antiplatelet-activity compound Secolincomolide A. These findings demonstrate that LO can be a potential source of antioxidants and other prospective therapeutically active constituents that can lead to the development of oxidative stress-mediated diseases, such as cardiovascular disorders, neurodegenerative disorders, allergies, inflammation, hepatotoxicity, and cancer. Here, the antioxidant properties of different species of Lindera genus are discussed briefly. The traditional use, phytochemistry, antioxidative and pharmacological properties of LO are also considered to help researchers screen potential lead compounds and design and develop future therapeutic agents to treat oxidative stress-mediated disorders.

10.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053856

ABSTRACT

In Parkinson's disease, mitochondrial oxidative stress-mediated apoptosis is a major cause of dopaminergic neuronal loss in the substantia nigra (SN). G protein-coupled receptor 4 (GPR4), previously recognised as an orphan G protein coupled-receptor (GPCR), has recently been claimed as a member of the group of proton-activated GPCRs. Its activity in neuronal apoptosis, however, remains undefined. In this study, we investigated the role of GPR4 in the 1-methyl-4-phenylpyridinium ion (MPP+) and hydrogen peroxide (H2O2)-treated apoptotic cell death of stably GPR4-overexpressing and stably GPR4-knockout human neuroblastoma SH-SY5Y cells. In GPR4-OE cells, MPP+ and H2O2 were found to significantly increase the expression levels of both mRNA and proteins of the pro-apoptotic Bcl-2-associated X protein (Bax) genes, while they decreased the anti-apoptotic B-cell lymphoma 2 (Bcl-2) genes. In addition, MPP+ treatment activated Caspase-3, leading to the cleavage of poly (ADP-ribose) polymerase (PARP) and decreasing the mitochondrial membrane potential (ΔΨm) in GPR4-OE cells. In contrast, H2O2 treatment significantly increased the intracellular calcium ions (Ca2+) and reactive oxygen species (ROS) in GPR4-OE cells. Further, chemical inhibition by NE52-QQ57, a selective antagonist of GPR4, and knockout of GPR4 by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 decreased the Bax/Bcl-2 ratio and ROS generation, and stabilised the ΔΨm, thus protecting the SH-SY5Y cells from MPP+- or H2O2-induced apoptotic cell death. Moreover, the knockout of GPR4 decreased the proteolytic degradation of phosphatidylinositol biphosphate (PIP2) and subsequent release of the endoplasmic reticulum (ER)-stored Ca2+ in the cytosol. Our results suggest that the pharmacological inhibition or genetic deletion of GPR4 improves the neurotoxin-induced caspase-dependent mitochondrial apoptotic pathway, possibly through the modulation of PIP2 degradation-mediated calcium signalling. Therefore, GPR4 presents a potential therapeutic target for neurodegenerative disorders such as Parkinson's disease.


Subject(s)
Caspases/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Mitophagy , Neurotoxins/pharmacology , Receptors, G-Protein-Coupled/deficiency , Apoptosis/drug effects , Calcium/metabolism , Cell Death , Cell Line, Tumor , Cell Survival/drug effects , Dopaminergic Neurons/pathology , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Membrane Potential, Mitochondrial/drug effects , Proteolysis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
11.
Cells ; 9(2)2020 02 23.
Article in English | MEDLINE | ID: mdl-32102186

ABSTRACT

Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals. Here, GPCRs' role in the pathophysiology of different neurodegenerative disease progressions and cognitive deficits has been highlighted, and an emphasis has been placed on the current pharmacological developments with GPCRs to provide an insight into a potential therapeutic target in the treatment of neurodegeneration.


Subject(s)
Antipsychotic Agents/therapeutic use , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Molecular Targeted Therapy/methods , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Antipsychotic Agents/pharmacology , Disease Models, Animal , Humans , Mice , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/classification
12.
Mov Disord ; 35(1): 20-33, 2020 01.
Article in English | MEDLINE | ID: mdl-31680318

ABSTRACT

Excessive activation of microglia and subsequent release of proinflammatory cytokines play a crucial role in neuroinflammation and neurodegeneration in Parkinson's disease (PD). Components of the nucleotide-binding oligomerization domain and leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome complex, leucine-rich-repeat- and pyrin-domain-containing 3, caspase-1, and apoptosis-associated speck-like protein containing a CARD, are highly expressed in activated microglia in PD patient brains. Findings suggest that neurotoxins, aggregation of α-synuclein, mitochondrial reactive oxygen species, and disrupted mitophagy are the key regulators of microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome activation and release of interleukin-1ß and interleukin-18 caspase-1-mediated pyroptotic cell death in the substantia nigra of the brain. Although this evidence suggests the leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome may be a potential drug target for treatment of PD, the exact mechanism of how the microglia sense these stimuli and initiate leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome signaling is unknown. Here, the molecular mechanism and regulation of microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome activation and its role in the pathogenesis of PD are discussed. Moreover, the potential of both endogenous and synthetic leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome modulators, long noncoding RNA, microRNA to develop novel therapeutics to treat PD is presented. Overall, we recommend that the microglial leucine-rich-repeat- and pyrin-domain-containing 3 inflammasome can be a potential target for PD treatment. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Dopaminergic Neurons/metabolism , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Parkinson Disease/metabolism , Parkinsonian Disorders/metabolism , Animals , Brain/metabolism , Humans
13.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480531

ABSTRACT

Neuroinflammation, apoptosis, and oxidative stress are connected to the pathogenesis of neurodegenerative diseases (NDDs). Targeting these three factors, the intervention of neuroprotective agents may have great potential in the treatment of NDDs. In the current study, the anti-inflammatory effects of the methanol extract of Allium cepa (MEAC) in lipopolysaccharide (LPS)-induced BV-2 microglial cells were investigated. MEAC has been studied in regard to the regulation of the antiapoptotic gene (Bcl-2) and various antioxidant enzyme (HO-1, NQO-1, and catalase) expressions in N27-A cells. Additionally, the protective action of MEAC has also been studied against MPP+-induced death in N27-A cells. The results suggest that MEAC is significantly protected from NO release and increase iNOS expression at the mRNA and protein levels in LPS-stimulated BV-2 microglial cells. MEAC treatment also protects COX-2 expression at the mRNA and protein levels. Furthermore, MEAC treatment prevents LPS-stimulated increases of proinflammatory cytokines, including TNF-α, IL-6, and IL-1ß. In N27-A cells, MEAC treatment significantly upregulates antiapoptotic gene (Bcl-2) and antioxidant enzyme (HO-1, NQO1, and catalase) expressions. Moreover, MEAC treatment protects against MPP+-induced death in N27-A cells. To conclude, A cepa extract takes protective action against LPS and MPP+, and upregulates the antioxidant enzymes that could potentially be used in the therapy of NDDs.

14.
Front Immunol ; 10: 1000, 2019.
Article in English | MEDLINE | ID: mdl-31134076

ABSTRACT

Neuronal dysfunction initiates several intracellular signaling cascades to release different proinflammatory cytokines and chemokines, as well as various reactive oxygen species. In addition to neurons, microglia, and astrocytes are also affected by this signaling cascade. This release can either be helpful, neutral or detrimental for cell survival. Toll-like receptors (TLRs) activate and signal their downstream pathway to activate NF-κB and pro-IL-1ß, both of which are responsible for neuroinflammation and linked to the pathogenesis of different age-related neurological conditions. However, herein, recent aspects of polyphenols in the treatment of neurodegenerative diseases are assessed, with a focus on TLR regulation by polyphenols. Different polyphenol classes, including flavonoids, phenolic acids, phenolic alcohols, stilbenes, and lignans can potentially target TLR signaling in a distinct pathway. Further, some polyphenols can suppress overexpression of inflammatory mediators through TLR4/NF-κB/STAT signaling intervention, while others can reduce neuronal apoptosis via modulating the TLR4/MyD88/NF-κB-pathway in microglia/macrophages. Indeed, neurodegeneration etiology is complex and yet to be completely understood, it may be that targeting TLRs could reveal a number of molecular and pharmacological aspects related to neurodegenerative diseases. Thus, activating TLR signaling modulation via natural resources could provide new therapeutic potentiality in the treatment of neurodegeneration.


Subject(s)
Neurodegenerative Diseases/drug therapy , Polyphenols/therapeutic use , Toll-Like Receptor 4/metabolism , Aging/physiology , Apoptosis/drug effects , Astrocytes/metabolism , Cell Survival/drug effects , Cytokines/metabolism , Humans , Macrophages/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/drug effects
15.
Redox Biol ; 24: 101223, 2019 06.
Article in English | MEDLINE | ID: mdl-31141786

ABSTRACT

Taurine is a sulfur-containing amino acid and known as semi-essential in mammals and is produced chiefly by the liver and kidney. It presents in different organs, including retina, brain, heart and placenta and demonstrates extensive physiological activities within the body. In the several disease models, it attenuates inflammation- and oxidative stress-mediated injuries. Taurine also modulates ER stress, Ca2+ homeostasis and neuronal activity at the molecular level as part of its broader roles. Different cellular processes such as energy metabolism, gene expression, osmosis and quality control of protein are regulated by taurine. In addition, taurine displays potential ameliorating effects against different neurological disorders such as neurodegenerative diseases, stroke, epilepsy and diabetic neuropathy and protects against injuries and toxicities of the nervous system. Several findings demonstrate its therapeutic role against neurodevelopmental disorders, including Angelman syndrome, Fragile X syndrome, sleep-wake disorders, neural tube defects and attention-deficit hyperactivity disorder. Considering current biopharmaceutical limitations, developing novel delivery approaches and new derivatives and precursors of taurine may be an attractive option for treating neurological disorders. Herein, we present an overview on the therapeutic potential of taurine against neurological disorders and highlight clinical studies and its molecular mechanistic roles. This article also addresses the neuropharmacological potential of taurine analogs.


Subject(s)
Taurine/analogs & derivatives , Taurine/pharmacology , Animals , Humans , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , Nervous System Diseases/metabolism , Taurine/therapeutic use
16.
Mol Neurobiol ; 56(8): 5799-5814, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30684217

ABSTRACT

NR4A2 is a nuclear receptor and a transcription factor, with distinctive physiological features. In the cell nuclei of the central nervous system, it is widely expressed and identified as a crucial regulator of dopaminergic (DA) neuronal differentiation, survival, and maintenance. Importantly, it has regulated different genes crucial for dopaminergic signals, and its expression has been diminished in both aged and PD post-mortem brains and reduced in PD patients. In microglia and astrocytes, the expression of NR4A2 has been found where it can be capable of inhibiting the expression of proinflammatory mediators; hence, it protected inflammation-mediated DA neuronal death. In addition, NR4A2 plays neuroprotective role via regulating different signals. However, NR4A2 has been mainly focused on Parkinson's research, but, in recent times, it has been studied in Alzheimer's disease (AD), multiple sclerosis (MS), and stroke. Altered expression of NR4A2 is connected to AD progression, and activation of its may improve cognitive function. It is downregulated in peripheral blood mononuclear cells of MS patients; nonetheless, its role in MS has not been fully clear. miR-145-5p known as a putative regulator of NR4A2 and in a middle cerebral artery occlusion/reperfusion model, anti-miR-145-5p administration promoted neurological outcomes in rat. To date, various activators and modulators of NR4A2 have been discovered and investigated as probable therapeutic drugs in neuroinflammatory and neuronal cell death models. The NR4A2 gene and cell-based therapy are described as promising drug candidates for neurodegenerative diseases. Moreover, microRNA might have a crucial role in neurodegeneration via affecting NR4A2 expression. Herein, we present the role of NR4A2 in neuroinflammation and neuronal cell death focusing on neurodegenerative conditions and display NR4A2 as a promising therapeutic target for the therapy of neuroprotection.


Subject(s)
Brain/pathology , Inflammation/drug therapy , Neurons/pathology , Neuroprotective Agents/therapeutic use , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Animals , Cell Death/drug effects , Humans , Inflammation/pathology , Neurons/drug effects , Neuroprotection , Neuroprotective Agents/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 2/chemistry
17.
Oncotarget ; 9(71): 33601-33620, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30323902

ABSTRACT

Cognitive impairment is a state that affects thinking, communication, understanding, and memory, and is very common in various neurological disorders. Among many factors, age-related cognitive decline is an important area in mental health research. Research to find therapeutic medications or supplements to treat cognitive deficits and maintain cognitive health has been ongoing. Ginseng and its active components may have played a role in treating chronic disorders. Numerous preclinical studies have confirmed that ginseng and its active components such as ginsenosides, gintonin, and compound K are pharmacologically efficacious in different models of and are linked to cognitive impairment. Among their several roles, they act as an anti-neuroinflammatory and help fight against oxidative stress and modulate the cholinergic signal. These roles may be involved in enhancing cognition and attenuating impairment. There have been some clinical studies on the activity of ginseng in cognitive impairment, but many ginseng species and active compounds remain to be investigated. In addition, new formulations of active ginseng components such as nanoparticles and liposomes could be used for preclinical and clinical models of cognitive impairment. Here, we discuss the therapeutic potential of active ginseng components in cognitive impairment and their chemistry and pharmacokinetics and consider prospects for their delivery and clinical study with respect to cognitive impairment.

18.
Front Mol Neurosci ; 11: 307, 2018.
Article in English | MEDLINE | ID: mdl-30210294

ABSTRACT

Glutamate receptors play a crucial role in the central nervous system and are implicated in different brain disorders. They play a significant role in the pathogenesis of neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although many studies on NDDs have been conducted, their exact pathophysiological characteristics are still not fully understood. In in vivo and in vitro models of neurotoxic-induced NDDs, neurotoxic agents are used to induce several neuronal injuries for the purpose of correlating them with the pathological characteristics of NDDs. Moreover, therapeutic drugs might be discovered based on the studies employing these models. In NDD models, different neurotoxic agents, namely, kainic acid, domoic acid, glutamate, ß-N-Methylamino-L-alanine, amyloid beta, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridinium, rotenone, 3-Nitropropionic acid and methamphetamine can potently impair both ionotropic and metabotropic glutamate receptors, leading to the progression of toxicity. Many other neurotoxic agents mainly affect the functions of ionotropic glutamate receptors. We discuss particular neurotoxic agents that can act upon glutamate receptors so as to effectively mimic NDDs. The correlation of neurotoxic agent-induced disease characteristics with glutamate receptors would aid the discovery and development of therapeutic drugs for NDDs.

19.
Front Cell Neurosci ; 12: 258, 2018.
Article in English | MEDLINE | ID: mdl-30186116

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with impairment of cognition, memory deficits and behavioral abnormalities. Accumulation of amyloid beta (Aß) is a characteristic hallmark of AD. Microglia express several GPCRs, which, upon activation by modulators, mediate microglial activation and polarization phenotype. This GPCR-mediated microglial activation has both protective and detrimental effects. Microglial GPCRs are involved in amyloid precursor protein (APP) cleavage and Aß generation. In addition, microglial GPCRs are featured in the regulation of Aß degradation and clearance through microglial phagocytosis and chemotaxis. Moreover, in response to Aß binding on microglial Aß receptors, they can trigger multiple inflammatory pathways. However, there is still a lack of insight into the mechanistic link between GPCR-mediated microglial activation and its pathological consequences in AD. Currently, the available drugs for the treatment of AD are mostly symptomatic and dominated by acetylcholinesterase inhibitors (AchEI). The selection of a specific microglial GPCR that is highly expressed in the AD brain and capable of modulating AD progression through Aß generation, degradation and clearance will be a potential source of therapeutic intervention. Here, we have highlighted the expression and distribution of various GPCRs connected to microglial activation in the AD brain and their potential to serve as therapeutic targets of AD.

20.
Sci Rep ; 8(1): 7174, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740000

ABSTRACT

The Salicornia europaea L. (SE) plant is a halophyte that has been widely consumed as a seasoned vegetable, and it has been recently reported to counteract chronic diseases related to oxidative and inflammatory stress. In this study, we performed an initial phytochemical analysis with in vitro biochemical tests and chromatographic profiling of desalted and enzyme-digested SE ethanol extract (SE-EE). Subsequently, we evaluated the anti-neuroinflammatory and ameliorative potential of SE-EE in LPS-inflicted BV-2 microglial cells and scopolamine-induced amnesic C57/BL6N mice, respectively. SE-EE possess considerable polyphenols and flavonoids that are supposedly responsible to improve its bio-efficacy. SE-EE dose-dependently attenuated LPS-induced inflammation in BV-2 cells, significantly repressed behavioural/cognitive impairment, dose-dependently regulated the cholinergic function, suppressed oxidative stress markers, regulated inflammatory cytokines/associated proteins expression and effectively ameliorated p-CREB/BDNF levels, neurogenesis (DCX stain), neuron proliferation (Ki67 stain) in scopolamine-administered mice. Thus, SE-EE extract shows promising multifactorial disease modifying activities and can be further developed as an effective functional food, drug candidate, or supplemental therapy to treat neuroinflammatory mediated disorders.


Subject(s)
Alzheimer Disease/drug therapy , Amnesia/drug therapy , Antioxidants/administration & dosage , Chenopodiaceae/chemistry , Inflammation/drug therapy , Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amnesia/chemically induced , Amnesia/genetics , Amnesia/pathology , Animals , Antioxidants/chemistry , Brain-Derived Neurotrophic Factor/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Disease Models, Animal , Doublecortin Protein , Gene Expression Regulation/drug effects , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Maze Learning/drug effects , Mice , Microglia/drug effects , Microglia/pathology , Oxidative Stress/drug effects , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Scopolamine/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...