Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Microbiol ; 14: 1238829, 2023.
Article in English | MEDLINE | ID: mdl-37744900

ABSTRACT

Background: Multiple variants of the SARS-CoV-2 virus have plagued the world through successive waves of infection over the past three years. Independent research groups across geographies have shown that the microbiome composition in COVID-19 positive patients (CP) differs from that of COVID-19 negative individuals (CN). However, these observations were based on limited-sized sample-sets collected primarily from the early days of the pandemic. Here, we study the nasopharyngeal microbiota in COVID-19 patients, wherein the samples have been collected across the three COVID-19 waves witnessed in India, which were driven by different variants of concern. Methods: The nasopharyngeal swabs were collected from 589 subjects providing samples for diagnostics purposes at the Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India and subjected to 16s rRNA gene amplicon - based sequencing. Findings: We found variations in the microbiota of symptomatic vs. asymptomatic COVID-19 patients. CP showed a marked shift in the microbial diversity and composition compared to CN, in a wave-dependent manner. Rickettsiaceae was the only family that was noted to be consistently depleted in CP samples across the waves. The genera Staphylococcus, Anhydrobacter, Thermus, and Aerococcus were observed to be highly abundant in the symptomatic CP patients when compared to the asymptomatic group. In general, we observed a decrease in the burden of opportunistic pathogens in the host microbiota during the later waves of infection. Interpretation: To our knowledge, this is the first analytical cross-sectional study of this scale, which was designed to understand the relation between the evolving nature of the virus and the changes in the human nasopharyngeal microbiota. Although no clear signatures were observed, this study shall pave the way for a better understanding of the disease pathophysiology and help gather preliminary evidence on whether interventions to the host microbiota can help in better protection or faster recovery.

2.
Cancer Rep (Hoboken) ; 6(11): e1877, 2023 11.
Article in English | MEDLINE | ID: mdl-37539732

ABSTRACT

BACKGROUND: The second most frequent cancer in the world and the most common malignancy in women is breast cancer. Breast cancer is a significant health concern in India with a high mortality-to-incidence ratio and presentation at a younger age. RECENT FINDINGS: Recent studies have identified gut microbiota as a significant factor that can have an influence on the development, treatment, and prognosis of breast cancer. This review article aims to describe the influence of microbial dysbiosis on breast cancer occurrence and the possible interactions between oncobiome and specific breast cancer molecular subtypes. The review further also discusses the role of epigenetics and diet/nutrition in the regulation of the gut and breast microbiome and its association with breast cancer prevention, therapy, and recurrence. Additionally, the recent technological advances in microbiome research, including next-generation sequencing (NGS) technologies, genome sequencing, single-cell sequencing, and microbial metabolomics along with recent advances in artificial intelligence (AI) have also been reviewed. This is an attempt to present a comprehensive status of the microbiome as a key cancer biomarker. CONCLUSION: We believe that correlating microbiome and carcinogenesis is important as it can provide insights into the mechanisms by which microbial dysbiosis can influence cancer development and progression, leading to the potential use of the microbiome as a tool for prognostication and personalized therapy.


Subject(s)
Breast Neoplasms , Microbiota , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Precision Medicine , Dysbiosis , Artificial Intelligence , Microbiota/genetics
3.
Sci Rep ; 11(1): 3294, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558598

ABSTRACT

Although skin is the primary affected organ in Leprosy, the role of the skin microbiome in its pathogenesis is not well understood. Recent reports have shown that skin of leprosy patients (LP) harbours perturbed microbiota which grants inflammation and disease progression. Herein, we present the results of nested Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) which was initially performed for investigating the diversity of bacterial communities from lesional skin (LS) and non-lesional skin (NLS) sites of LP (n = 11). Further, we performed comprehensive analysis of 16S rRNA profiles corresponding to skin samples from participants (n = 90) located in two geographical locations i.e. Hyderabad and Miraj in India. The genus Staphylococcus was observed to be one of the representative bacteria characterizing healthy controls (HC; n = 30), which in contrast was underrepresented in skin microbiota of LP. Taxa affiliated to phyla Firmicutes and Proteobacteria were found to be signatures of HC and LS, respectively. Observed diversity level changes, shifts in core microbiota, and community network structure support the evident dysbiosis in normal skin microbiota due to leprosy. Insights obtained indicate the need for exploring skin microbiota modulation as a potential therapeutic option for leprosy.


Subject(s)
Bacteria , Leprosy , Microbiota/genetics , Bacteria/classification , Bacteria/genetics , Female , Humans , India , Leprosy/genetics , Leprosy/microbiology , Male , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
4.
Front Microbiol ; 11: 551, 2020.
Article in English | MEDLINE | ID: mdl-32296412

ABSTRACT

Functional equilibrium between vaginal microbiota and the host is important for maintaining gynecological and reproductive health. Apart from host genetics, infections, changes in diet, life-style and hygiene status are known to affect this delicate state of equilibrium. More importantly, the gonadal hormones strongly influence the overall structure and function of vaginal microbiota. Several studies have attempted to understand (a) the composition of vaginal microbiota in specific stages of women's reproductive cycle as well as in menopause (b) their association with gonadal hormones, and their potential role in manifestation of specific health conditions (from the perspective of cause/consequence). However, a single study that places, in context, the structural variations of the vaginal microbiome across the entire life-span of women's reproductive cycle and during various stages of menopause is currently lacking. With the objective to obtain a holistic overview of the community dynamics of vaginal micro-environment 'across' various stages of women's reproductive and post-reproductive life-cycle, we have performed a meta-analysis of approximately 1,000 vaginal microbiome samples representing various stages of the reproductive cycle and menopausal states. Objectives of this analysis included (a) understanding temporal changes in vaginal community taxonomic structure and composition as women pass through various reproductive and menopausal stages (b) exploring correlations between the levels of female sex hormones with vaginal microbiome diversity (c) analyzing changes in the pattern of community diversity in cases of dysbiotic conditions such as bacterial vaginosis, and viewing the analyzed changes in the context of a healthy state. Results reveal interesting temporal trends with respect to vaginal microbial community diversity and its pattern of correlation with host physiology. Results indicate significant differences in alpha-diversity and overall vaginal microbial community members in various reproductive and post-reproductive phases. In addition to reinforcing the known influence/role of gonadal hormones in maintaining gynecological health, results indicate how hormonal level perturbations cause/contribute to imbalances in vaginal microbiota. The nature of resulting dysbiotic state and its influence on vaginal health is also analyzed and discussed. Results also suggest that elevated vaginal microbial diversity in pregnancy does not necessarily indicate a state of bacterial infection. The study puts forward a hormone-level driven microbiome diversity hypothesis for explaining temporal patterns in vaginal microbial diversity during various stages of women's reproductive cycle and at menopause.

5.
J Biosci ; 44(5)2019 Oct.
Article in English | MEDLINE | ID: mdl-31719227

ABSTRACT

Recent studies have highlighted the potential of 'translational' microbiome research in addressing real-world challenges pertaining to human health, nutrition and disease. Additionally, outcomes of microbiome research have also positively impacted various aspects pertaining to agricultural productivity, fuel or energy requirements, and stability/preservation of various ecological habitats. Microbiome data is multi-dimensional with various types of data comprising nucleic and protein sequences, metabolites as well as various metadata related to host and or environment. This poses a major challenge for computational analysis and interpretation of data to reach meaningful, reproducible (and replicable) biological conclusions. In this review, we first describe various aspects of microbiomes that make them an attractive tool/target for developing various translational applications. The challenge of deciphering signatures from an information-rich resource like the microbiome is also discussed. Subsequently, we present three case-studies that exemplify the potential of microbiome- based solutions in solving real-world problems. The final part of the review attempts to familiarize readers with the importance of a robust study design and the diligence required during every stage of analysis for achieving solutions with potential translational value.


Subject(s)
Translational Research, Biomedical , Humans , Microbiota
6.
Sci Data ; 6(1): 225, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31641132

ABSTRACT

Leprosy is an infectious disease that has predilection in skin and peripheral nerves. Skin has its own microbiome, however it is not extensively studied in Indian leprosy patients. Here, by using next-generation 16S rDNA sequencing, we have attempted to assess the skin associated microbial diversity pertaining to affected and unaffected skin of Indian leprosy patients. A total of 90 skin swab samples were collected from 60 individuals (30 healthy controls, 30 patients) residing in Hyderabad and Miraj, two distinct geographical locations in India to assess the homo/heterogeneity of skin microbial signatures. While a large increase in genus Methylobacterium and Pseudomonas was seen in patients from Miraj and Hyderabad respectively, a considerable decrease in genus Staphylococcus in the leprosy patients (as compared to controls) from both geographical locations was also observed. We expect that, these datasets can not-only provide further interesting insights, but will also help to observe dynamics of microbiome in the diseased state and generate hypotheses to test for skin microbiome transplantation studies in leprosy.

7.
Sci Rep ; 9(1): 5473, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940833

ABSTRACT

Fructo-oligosaccharides (FOS), a prebiotic supplement, is known for its Bifidogenic capabilities. However, aspects such as effect of variable quantities of FOS intake on gut microbiota, and temporal dynamics of gut microbiota (transitioning through basal, dosage, and follow-up phases) has not been studied in detail. This study investigated these aspects through a randomized, double-blind, placebo-controlled, dose-response relationship study. The study involved 80 participants being administered FOS at three dose levels (2.5, 5, and 10 g/day) or placebo (Maltodextrin 10 g/day) during dosage phase. Microbial DNA extracted from fecal samples collected at 9 intervening time-points was sequenced and analysed. Results indicate that FOS consumption increased the relative abundance of OTUs belonging to Bifidobacterium and Lactobacillus. Interestingly, higher FOS dosage appears to promote, in contrast to Maltodextrin, the selective proliferation of OTUs belonging to Lactobacillus. While consumption of prebiotics increased bacterial diversity, withdrawal led to its reduction. Apart from probiotic bacteria, a significant change was also observed in certain butyrate-producing microbes like Faecalibacterium, Ruminococcus and Oscillospira. The positive impact of FOS on butyrate-producing bacteria and FOS-mediated increased bacterial diversity reinforces the role of prebiotics in conferring beneficial functions to the host.


Subject(s)
Bacteria/classification , Fructose/chemistry , Gastrointestinal Microbiome/drug effects , Oligosaccharides/administration & dosage , Adult , Bacteria/drug effects , Bacteria/isolation & purification , DNA, Bacterial/genetics , Dose-Response Relationship, Drug , Double-Blind Method , Feces/microbiology , Female , Humans , Male , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Phylogeny , Prebiotics , Prospective Studies , Sequence Analysis, DNA , Young Adult
8.
Front Microbiol ; 10: 2874, 2019.
Article in English | MEDLINE | ID: mdl-31921052

ABSTRACT

Introduction: Urbanization is a globally pervasive trend. Although urban settings provide better access to infrastructure and opportunities, urban lifestyles have certain negative consequences on human health. A number of recent studies have found interesting associations between the structure of human gut microbiota and the prevalence of metabolic conditions characterizing urban populations. The present study attempts to expand the footprint of these investigations to an Indian context. The objectives include elucidating specific patterns and gradients based on resident habitat and lifestyles (i.e., tribal and urban) that characterize gut microbial communities. Methods: Available 16S rRNA sequence datasets corresponding to the gut microbiota of urban and tribal populations from multiple regions of India have been rigorously compared. This analysis was carried out to understand the overall community structure, resident taxa, and their (inferred) functional components as well as their correlations with available meta-information. Results: The gut microbiota of urban and tribal communities are observed to have characteristically different signatures with respect to diversity as well as taxonomic and functional composition. Primarily, the gut microbiota in tribal communities is found to harbor significantly higher species diversity and richness as compared to that in urban populations. In spite of geographical segregation and diet-related differences, gut microbial diversity was not found to differ significantly between tribal groups. Furthermore, while the taxonomic profiles of different tribal communities cluster together irrespective of their geographic location, enterotype analysis indicates that samples from urban communities form two distinct clusters. Taxonomic analysis of samples in one of these clusters reveals the presence of microbes that are common to both urban and tribal cohorts, indicating a probable transient evolutionary state. Prevotella, previously reported to be the dominant genus resident in Indian gut microbiota, is found to have distinct OTUs and strain-specific oligotypes characterizing resident habitats and diet patterns. Certain interesting associations between microbial abundances and specific metadata have also been observed. Overall, urban lifestyle and diet appear to impact the structure and function of gut microbial communities, and the results of this study provide further evidence of this likely detrimental association. Conclusion: This study attempts to analyze, in an Indian context, the impact of urbanization on the human gut microbiota. Overall, the analysis elucidates interesting taxonomic and functional signatures characterizing the evolutionary transition in gut microbiota from tribal to urban.

9.
PLoS One ; 13(4): e0195643, 2018.
Article in English | MEDLINE | ID: mdl-29624599

ABSTRACT

The human gut microbiome contributes to a broad range of biochemical and metabolic functions that directly or indirectly affect human physiology. Several recent studies have indicated that factors like age, geographical location, genetic makeup, and individual health status significantly influence the diversity, stability, and resilience of the gut microbiome. Of the mentioned factors, geographical location (and related dietary/socio-economic context) appears to explain a significant portion of microbiome variation observed in various previously conducted base-line studies on human gut microbiome. Given this context, we have undertaken a microbiome study with the objective of cataloguing the taxonomic diversity of gut microbiomes sampled from an urban cohort from Ahmedabad city in Western India. Computational analysis of microbiome sequence data corresponding to 160 stool samples (collected from 80 healthy individuals at two time-points, 60 days apart) has indicated a Prevotella-dominated microbial community. Given that the typical diet of participants included carbohydrate and fibre-rich components (predominantly whole grains and legume-based preparations), results appear to validate the proposed correlation between diet/geography and microbiome composition. Comparative analysis of obtained gut microbiome profiles with previously published microbiome profiles from US, China, Finland, and Japan additionally reveals a distinct taxonomic and (inferred) functional niche for the sampled microbiomes.


Subject(s)
Gastrointestinal Microbiome , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Adult , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cohort Studies , Diet , Female , Finland , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Gastrointestinal Microbiome/genetics , Humans , India , Japan , Male , Microbial Consortia/genetics , Phylogeography , Prevotella/genetics , Prevotella/isolation & purification , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Species Specificity , United States , Urban Population , Young Adult
10.
Front Microbiol ; 9: 3336, 2018.
Article in English | MEDLINE | ID: mdl-30692979

ABSTRACT

Background: The objectives of any metagenomic study typically include identification of resident microbes and their relative proportions (taxonomic analysis), profiling functional diversity (functional analysis), and comparing the identified microbes and functions with available metadata (comparative metagenomics). Given the advantage of cost-effectiveness and convenient data-size, amplicon-based sequencing has remained the technology of choice for exploring phylogenetic diversity of an environment. A recent school of thought, employing the existing genome annotation information for inferring functional capacity of an identified microbiome community, has given a promising alternative to Whole Genome Shotgun sequencing for functional analysis. Although a handful of tools are currently available for function inference, their scope, functionality and utility has essentially remained limited. Need for a comprehensive framework that expands upon the existing scope and enables a standardized workflow for function inference, analysis, and visualization, is therefore felt. Methods: We present iVikodak, a multi-modular web-platform that hosts a logically inter-connected repertoire of functional inference and analysis tools, coupled with a comprehensive visualization interface. iVikodak is equipped with microbial co-inhabitance pattern driven published algorithms along with multiple updated databases of various curated microbe-function maps. It also features an advanced task management and result sharing system through introduction of personalized and portable dashboards. Results: In addition to inferring functions from 16S rRNA gene data, iVikodak enables (a) an in-depth analysis of specific functions of interest (b) identification of microbes contributing to various functions (c) microbial interaction patterns through function-driven correlation networks, and (d) simultaneous functional comparison between multiple microbial communities. We have bench-marked iVikodak through multiple case studies and comparisons with existing state of art. We also introduce the concept of a public repository which provides a first of its kind community-driven framework for scientific data analytics, collaboration and sharing in this area of microbiome research. Conclusion: Developed using modern design and task management practices, iVikodak provides a multi-modular, yet inter-operable, one-stop framework, that intends to simplify the entire approach toward inferred function analysis. It is anticipated to serve as a significant value addition to the existing space of functional metagenomics. iVikodak web-server may be freely accessed at https://web.rniapps.net/iVikodak/.

11.
Sci Rep ; 7(1): 16145, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170495

ABSTRACT

Preterm birth is a leading cause of global neonate mortality. Hospitalization costs associated with preterm deliveries present a huge economic burden. Existing physical/biochemical markers for predicting preterm birth risk are mostly suited for application at mid/late pregnancy stages, thereby leaving very short time (between diagnosis and delivery) for adopting appropriate intervention strategies. Recent studies indicating correlations between pre/full-term delivery and the composition of vaginal microbiota in pregnant women have opened new diagnostic possibilities. In this study, we performed a thorough meta-analysis of vaginal microbiome datasets to evaluate the utility of popular diversity and inequality measures for predicting, at an early stage, the risk of preterm delivery. Results indicate significant differences (in diversity measures) between 'first-trimester' vaginal microbiomes obtained from women with term and preterm outcomes, indicating the potential diagnostic utility of these measures. In this context, we introduce a novel diversity metric that has significantly better diagnostic ability as compared to established diversity measures. The metric enables 'early' and highly accurate prediction of preterm delivery outcomes, and can potentially be deployed in clinical settings for preterm birth risk-assessment. Our findings have potentially far reaching implications in the fight against neonatal deaths due to preterm birth.


Subject(s)
Microbiota/genetics , Vagina/microbiology , Female , Humans , Infant, Newborn , Pregnancy , Pregnancy Trimester, First , Premature Birth/genetics
12.
PLoS One ; 11(4): e0154493, 2016.
Article in English | MEDLINE | ID: mdl-27124399

ABSTRACT

The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM) software (customised for deriving 'microbial association rules' from microbiome data) is freely available for download from the following link: http://metagenomics.atc.tcs.com/arm.


Subject(s)
Data Mining/methods , Metagenome , Microbial Interactions , Algorithms , Databases, Genetic , Gastrointestinal Microbiome , Humans , Web Browser
13.
PLoS One ; 11(2): e0148347, 2016.
Article in English | MEDLINE | ID: mdl-26848568

ABSTRACT

BACKGROUND: The overall metabolic/functional potential of any given environmental niche is a function of the sum total of genes/proteins/enzymes that are encoded and expressed by various interacting microbes residing in that niche. Consequently, prior (collated) information pertaining to genes, enzymes encoded by the resident microbes can aid in indirectly (re)constructing/ inferring the metabolic/ functional potential of a given microbial community (given its taxonomic abundance profile). In this study, we present Vikodak--a multi-modular package that is based on the above assumption and automates inferring and/ or comparing the functional characteristics of an environment using taxonomic abundance generated from one or more environmental sample datasets. With the underlying assumptions of co-metabolism and independent contributions of different microbes in a community, a concerted effort has been made to accommodate microbial co-existence patterns in various modules incorporated in Vikodak. RESULTS: Validation experiments on over 1400 metagenomic samples have confirmed the utility of Vikodak in (a) deciphering enzyme abundance profiles of any KEGG metabolic pathway, (b) functional resolution of distinct metagenomic environments, (c) inferring patterns of functional interaction between resident microbes, and (d) automating statistical comparison of functional features of studied microbiomes. Novel features incorporated in Vikodak also facilitate automatic removal of false positives and spurious functional predictions. CONCLUSIONS: With novel provisions for comprehensive functional analysis, inclusion of microbial co-existence pattern based algorithms, automated inter-environment comparisons; in-depth analysis of individual metabolic pathways and greater flexibilities at the user end, Vikodak is expected to be an important value addition to the family of existing tools for 16S based function prediction. AVAILABILITY AND IMPLEMENTATION: A web implementation of Vikodak can be publicly accessed at: http://metagenomics.atc.tcs.com/vikodak. This web service is freely available for all categories of users (academic as well as commercial).


Subject(s)
Metabolic Networks and Pathways/genetics , Metagenome/genetics , Metagenomics/methods , Microbiota/genetics , Algorithms , Automation, Laboratory , Metabolic Networks and Pathways/physiology , Microbiota/physiology , RNA, Ribosomal, 16S/genetics
14.
PLoS One ; 10(11): e0142102, 2015.
Article in English | MEDLINE | ID: mdl-26561344

ABSTRACT

BACKGROUND: Recent advances in sequencing technologies have resulted in an unprecedented increase in the number of metagenomes that are being sequenced world-wide. Given their volume, functional annotation of metagenomic sequence datasets requires specialized computational tools/techniques. In spite of having high accuracy, existing stand-alone functional annotation tools necessitate end-users to perform compute-intensive homology searches of metagenomic datasets against "multiple" databases prior to functional analysis. Although, web-based functional annotation servers address to some extent the problem of availability of compute resources, uploading and analyzing huge volumes of sequence data on a shared public web-service has its own set of limitations. In this study, we present COGNIZER, a comprehensive stand-alone annotation framework which enables end-users to functionally annotate sequences constituting metagenomic datasets. The COGNIZER framework provides multiple workflow options. A subset of these options employs a novel directed-search strategy which helps in reducing the overall compute requirements for end-users. The COGNIZER framework includes a cross-mapping database that enables end-users to simultaneously derive/infer KEGG, Pfam, GO, and SEED subsystem information from the COG annotations. RESULTS: Validation experiments performed with real-world metagenomes and metatranscriptomes, generated using diverse sequencing technologies, indicate that the novel directed-search strategy employed in COGNIZER helps in reducing the compute requirements without significant loss in annotation accuracy. A comparison of COGNIZER's results with pre-computed benchmark values indicate the reliability of the cross-mapping database employed in COGNIZER. CONCLUSION: The COGNIZER framework is capable of comprehensively annotating any metagenomic or metatranscriptomic dataset from varied sequencing platforms in functional terms. Multiple search options in COGNIZER provide end-users the flexibility of choosing a homology search protocol based on available compute resources. The cross-mapping database in COGNIZER is of high utility since it enables end-users to directly infer/derive KEGG, Pfam, GO, and SEED subsystem annotations from COG categorizations. Furthermore, availability of COGNIZER as a stand-alone scalable implementation is expected to make it a valuable annotation tool in the field of metagenomic research. AVAILABILITY AND IMPLEMENTATION: A Linux implementation of COGNIZER is freely available for download from the following links: http://metagenomics.atc.tcs.com/cognizer, https://metagenomics.atc.tcs.com/function/cognizer.


Subject(s)
Databases, Genetic , Metagenome , Metagenomics/methods , Algorithms , Humans , Reproducibility of Results , Sequence Analysis, DNA/methods , Software , Workflow
15.
Genomics ; 106(2): 116-21, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25944184

ABSTRACT

UNLABELLED: Metagenomic sequencing data, obtained from host-associated microbial communities, are usually contaminated with host genome sequence fragments. Prior to performing any downstream analyses, it is necessary to identify and remove such contaminating sequence fragments. The time and memory requirements of available host-contamination detection techniques are enormous. Thus, processing of large metagenomic datasets is a challenging task. This study presents CS-SCORE--a novel algorithm that can rapidly identify host sequences contaminating metagenomic datasets. Validation results indicate that CS-SCORE is 2-6 times faster than the current state-of-the-art methods. Furthermore, the memory footprint of CS-SCORE is in the range of 2-2.5GB, which is significantly lower than other available tools. CS-SCORE achieves this efficiency by incorporating (1) a heuristic pre-filtering mechanism and (2) a directed-mapping approach that utilizes a novel sequence composition metric (cs-score). CS-SCORE is expected to be a handy 'pre-processing' utility for researchers analyzing metagenomic datasets. AVAILABILITY: For academic users, an implementation of CS-SCORE is freely available at: http://metagenomics.atc.tcs.com/cs-score (or) https://metagenomics.atc.tcs.com/preprocessing/cs-score.


Subject(s)
Algorithms , Genome, Human , Metagenomics/methods , Humans
16.
J Bioinform Comput Biol ; 13(3): 1541003, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25790783

ABSTRACT

Sequence data repositories archive and disseminate fastq data in compressed format. In spite of having relatively lower compression efficiency, data repositories continue to prefer GZIP over available specialized fastq compression algorithms. Ease of deployment, high processing speed and portability are the reasons for this preference. This study presents FQC, a fastq compression method that, in addition to providing significantly higher compression gains over GZIP, incorporates features necessary for universal adoption by data repositories/end-users. This study also proposes a novel archival strategy which allows sequence repositories to simultaneously store and disseminate lossless as well as (multiple) lossy variants of fastq files, without necessitating any additional storage requirements. For academic users, Linux, Windows, and Mac implementations (both 32 and 64-bit) of FQC are freely available for download at: https://metagenomics.atc.tcs.com/compression/FQC .


Subject(s)
Data Compression/methods , Data Curation/methods , Sequence Analysis, DNA/methods , Software , Algorithms , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...