Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791967

ABSTRACT

Pseudokinases are catalytically inactive proteins in the human genome that lack the ability to transfer phosphate from ATP to their substrates. The Tribbles family of pseudokinases contains three members: Tribbles 1, 2, and 3. Tribbles 1 has recently gained importance because of its involvement in various diseases, including cancer. It acts as a scaffolding protein that brings about the degradation of its substrate proteins, such as C/EBPα/ß, MLXIPL, and RAR/RXRα, among others, via the ubiquitin proteasome system. It also serves as an adapter protein, which sequesters different protein molecules and activates their downstream signaling, leading to processes, such as cell survival, cell proliferation, and lipid metabolism. It has been implicated in cancers such as AML, prostate cancer, breast cancer, CRC, HCC, and glioma, where it activates oncogenic signaling pathways such as PI3K-AKT and MAPK and inhibits the anti-tumor function of p53. TRIB1 also causes treatment resistance in cancers such as NSCLC, breast cancer, glioma, and promyelocytic leukemia. All these effects make TRIB1 a potential drug target. However, the lack of a catalytic domain renders TRIB1 "undruggable", but knowledge about its structure, conformational changes during substrate binding, and substrate binding sites provides an opportunity to design small-molecule inhibitors against specific TRIB1 interactions.

2.
Cancers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672598

ABSTRACT

Although grading is defined by the highest histological grade observed in a glioma, most high-grade gliomas retain areas with histology reminiscent of their low-grade counterparts. We sought to achieve the following: (i) identify proteins and molecular pathways involved in glioma evolution; and (ii) validate the high mobility group protein B2 (HMGB2) as a key player in tumor progression and as a prognostic/predictive biomarker for diffuse astrocytomas. We performed liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple areas of adult-type astrocytomas and validated our finding in multiplatform-omics studies and high-throughput IHC analysis. LC-MS/MSdetected proteomic signatures characterizing glioma evolution towards higher grades associated with, but not completely dependent, on IDH status. Spatial heterogeneity of diffuse astrocytomas was associated with dysregulation of specific molecular pathways, and HMGB2 was identified as a putative driver of tumor progression, and an early marker of worse overall survival in grades 2 and 3 diffuse gliomas, at least in part regulated by DNA methylation. In grade 4 astrocytomas, HMGB2 expression was strongly associated with proliferative activity and microvascular proliferation. Grounded in proteomic findings, our results showed that HMGB2 expression assessed by IHC detected early signs of tumor progression in grades 2 and 3 astrocytomas, as well as identified GBMs that had a better response to the standard chemoradiation with temozolomide.

3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35216362

ABSTRACT

Gliomas represent a wide spectrum of brain tumors characterized by their high invasiveness, resistance to chemoradiotherapy, and both intratumoral and intertumoral heterogeneity. Recent advances in transomics studies revealed that enormous abnormalities exist in different biological layers of glioma cells, which include genetic/epigenetic alterations, RNA expressions, protein expression/modifications, and metabolic pathways, which provide opportunities for development of novel targeted therapeutic agents for gliomas. Metabolic reprogramming is one of the hallmarks of cancer cells, as well as one of the oldest fields in cancer biology research. Altered cancer cell metabolism not only provides energy and metabolites to support tumor growth, but also mediates the resistance of tumor cells to antitumor therapies. The interactions between cancer metabolism and DNA repair pathways, and the enhancement of radiotherapy sensitivity and assessment of radiation response by modulation of glioma metabolism are discussed herein.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Repair/genetics , Glioma/genetics , Glioma/pathology , Metabolic Networks and Pathways/genetics , Radiation Tolerance/genetics , Animals , Humans
4.
Oncotarget ; 9(18): 14597-14607, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29581866

ABSTRACT

Glioblastoma (GBM) is an aggressive, malignant brain tumor that inevitably develops resistance to conventional chemotherapy and radiation treatments. In order to identify signaling pathways involved in the development of radiation resistance, we performed mass spectrometry-based phospho-proteomic profiling of GBM cell lines and normal human astrocytes before and after radiation treatment. We found radiation induced phosphorylation of a number of proteins including calpastatin, specifically in GBM stem cells (GSCs). Herein, we focused on calpastatin, an endogenous inhibitor of calpain proteases. Radiation-induced phosphorylation of calpastatin at Ser-633 within the inhibitory domain was validated with a phospho-specific antibody. In order to test the functional significance of phosphorylated calpastatin, we utilized site-directed mutagenesis to generate phospho-inactive (Ser633Ala) and phospho-mimetic (Ser633Glu) mutant calpastatin. GBM cell lines stably expressing the mutant calpastatin showed that phosphorylation was necessary for radiation-induced calpain activation. We also showed that casein kinase 2, a pro-survival kinase overexpressed in many cancer types, phosphorylated calpastatin at Ser-633. Our results indicate that calpastatin phosphorylation promotes radiation resistance in GBM cells by increasing the activity of calpain proteases, which are known to promote survival and invasion in cancer.

5.
Oncotarget ; 9(98): 37097-37111, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30647847

ABSTRACT

The presence of an isocitrate dehydrogenase (IDH1/2) mutation in gliomas is associated with favorable outcomes compared to gliomas without the mutation (IDH1/2 wild-type, WT). The underlying biological mechanisms accounting for improved clinical outcomes in IDH1/2 mutant gliomas remain poorly understood, but may, in part, be due to the glioma CpG island methylator phenotype (G-CIMP) and epigenetic silencing of genes. We performed profiling of IDH1/2 WT versus IDH1/2 mutant Grade II and III gliomas and identified transgelin-2 (TAGLN2), an oncogene and actin-polymerizing protein, to be expressed at significantly higher levels in IDH1/2 WT gliomas compared to IDH1/2 mutant gliomas. This differential expression of TAGLN2 was primarily due to promoter hypermethylation in IDH1/2 mutant gliomas, suggesting involvement of TAGLN2 in the G-CIMP. Our results also suggest that TAGLN2 may be involved in progression due to higher expression in glioblastomas compared to IDH1/2 WT gliomas of lower grades. Furthermore, our results suggest that TAGLN2 functions as an oncogene by contributing to proliferation and invasion when overexpressed in IDH1/2 WT glioma cells. Taken together, this study demonstrates a possible link between increased TAGLN2 expression, invasion and poor patient outcomes in IDH1/2 WT gliomas and identifies TAGLN2 as a potential novel therapeutic target for IDH1/2 WT gliomas.

6.
Cancer Lett ; 381(1): 113-21, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27471105

ABSTRACT

Circulating miRNAs are a novel class of stable, minimally invasive disease biomarkers that are considered to be valuable in diagnosis, prognosis and treatment response monitoring. Unlike intracellular miRNAs, circulating miRNAs are released from their producer cells and, based on their targeted functions, they may shuttle in and out of circulation. Their discovery has opened up new avenues for clinical realms and led to a quest for targeted biomarkers. Subsequently, as more cell-free miRNAs are being discovered, their expression is expected to provide precise information regarding disease progression and treatment outcomes, thereby fostering personalized therapeutic strategies. The significance of circulating miRNAs capitalizes on the fact that they are highly stable in body fluids and their expression levels can be detected by common techniques such as qPCR and microarray. However, discrepancies have started to emerge in terms of their reliability and their response under physiological and pathological conditions. Functional studies are still pending, which may determine whether circulating miRNAs play a role as a central component or just as an auxiliary tuner. Also, the distinct clinical signatures that they display have never been subjected to an extensive critical review and experimental validation. As a consequence, the applicability of circulating miRNAs remains a matter of deliberation, despite many intriguing perspectives about their competency. In this review, we highlight some ambiguous issues with the application of circulating miRNAs, which may warrant an immediate consideration. We propose that the circulating miRNA domain needs to be reevaluated to authenticate their specific role and to probe whether they actually carry any clinical weightage.


Subject(s)
Biomarkers, Tumor/blood , MicroRNAs/blood , Neoplasms/blood , RNA, Neoplasm/blood , Animals , Biomarkers, Tumor/genetics , Genetic Therapy/methods , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , Molecular Diagnostic Techniques , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Predictive Value of Tests , Prognosis , RNA, Neoplasm/genetics
7.
Antioxid Redox Signal ; 17(4): 674-83, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22122448

ABSTRACT

SIGNIFICANCE: The cysteine (Cys) residues of proteins play two fundamentally important roles. They serve as sites of post-translational redox modifications as well as influence the conformation of the protein through the formation of disulfide bonds. RECENT ADVANCES: Redox-related and redox-associated protein folding in protozoan parasites has been found to be a major mode of regulation, affecting myriad aspects of the parasitic life cycle, host-parasite interactions, and the disease pathology. Available genome sequences of various parasites have begun to complement the classical biochemical and enzymological studies of these processes. In this article, we summarize the reversible Cys disulfide (S-S) bond formation in various classes of strategically important parasitic proteins, and its structural consequence and functional relevance. CRITICAL ISSUES: Molecular mechanisms of folding remain under-studied and often disconnected from functional relevance. FUTURE DIRECTIONS: The clinical benefit of redox research will require a comprehensive characterization of the various isoforms and paralogs of the redox enzymes and their concerted effect on the structure and function of the specific parasitic client proteins.


Subject(s)
Parasites/metabolism , Protein Folding , Animals , Models, Molecular , Oxidation-Reduction , Parasites/enzymology
8.
Oncotarget ; 1(4): 289-303, 2010 Aug.
Article in English | MEDLINE | ID: mdl-21304179

ABSTRACT

Tumorigenic potential of glioblastoma multiforme (GBM) cells is, in part, attributable to their undifferentiated (neural stem cell-like) phenotype. Astrocytic differentiation of GBM cells is associated with transcriptional induction of Glial Fibrillary Acidic Protein (GFAP) and repression of Nestin, whereas the reciprocal transcription program operates in undifferentiated GBM cells. The molecular mechanisms underlying the regulation of these transcription programs remain elusive. Here, we show that the transcriptional co-activator p300 was expressed in GBM tumors and cell lines and acted as an activator of the GFAP gene and a repressor of the Nestin gene. On the other hand, Myc (formerly known as c-Myc overrode these p300 functions by repressing the GFAP gene and inducing the Nestin gene in GBM cells. Moreover, RNAi-mediated inhibition of p300 expression significantly enhanced the invasion potential of GBM cells in vitro. Taken together, these data suggest that dedifferentiated/undifferentiated GBM cells are more invasive than differentiated GBM cells. Because invasion is a major cause of GBM morbidity, differentiation therapy may improve the clinical outcome.


Subject(s)
Cell Differentiation/genetics , E1A-Associated p300 Protein/genetics , Genes, myc , Glioblastoma/genetics , Glioblastoma/pathology , Animals , Blotting, Western , Cell Dedifferentiation , Cell Line, Tumor , Cell Proliferation , E1A-Associated p300 Protein/metabolism , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Glial Fibrillary Acidic Protein/genetics , Glioblastoma/metabolism , Humans , Intermediate Filament Proteins/genetics , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplastic Stem Cells , Nerve Tissue Proteins/genetics , Nestin , Neural Stem Cells , RNA Interference , Transcription, Genetic
9.
Eur J Cancer ; 45(4): 677-84, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19121577

ABSTRACT

Previously we reported that Stat3 is persistently activated in GBM tumours and derived cell lines. Hypoxia, necrosis and neo-angiogenesis are hallmarks of GBM. To unfold the contribution of activated Stat3 to the growth of GBM, we generated human GBM cell line (U87)-derived stable clones expressing a dominant negative mutant (DN)-Stat3 in a hypoxia-inducible manner, and examined their tumour-forming potentials in immune-compromised mice. We found that the parental and vector control cell-derived tumours grew steadily, whereas DN-Stat3-expressing clone-derived tumours failed to grow beyond 2mm of thickness in mouse flanks. This blockade of tumour growth was associated with induction of tumour cell apoptosis and suppression of tumour angiogenesis. Consistent with this, mice bearing orthotopically implanted DN-Stat3-expressing clones survived significantly longer than the control mice. These data suggest that activated Stat3 is required for the growth of GBM, and that targeting Stat3 may intervene with the growth of GBM.


Subject(s)
Glioblastoma/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis , Cell Hypoxia , Cell Proliferation , Disease Models, Animal , Disease Progression , Electrophoretic Mobility Shift Assay/methods , Genetic Vectors , Glioblastoma/blood supply , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Immunocompromised Host , Mice , Mice, Nude , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/physiology , Neoplasm Transplantation , Neovascularization, Pathologic/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/methods , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/physiology , Survival Analysis , Transplantation, Heterologous , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...