Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1275665, 2023.
Article in English | MEDLINE | ID: mdl-38143861

ABSTRACT

Introduction: There is little information on evolutionarily ancient eukaryotes, which are often referred to as basal eukaryotes, in Arctic waters. Despite earlier studies being conducted in the Russian White Sea, only few have been reported. Methods: Following a shotgun sequence survey of diatom cultures from Sugluk Inlet off the Hudson Strait in Northern Québec, we obtained the complete mitochondrial genome and the operon of nuclear ribosomal RNA genes from a strain that matches that of Ancyromonas sigmoides (Kent, 1881). Results: The sequence of the mitogenome retrieved was 41,889 bp in length and encoded 38 protein-coding genes, 5 non-conserved open-reading frames, and 2 rRNA and 24 tRNA genes. The mitogenome has retained sdh2 and sdh3, two genes of the succinate dehydrogenase complex, which are sometimes found among basal eukaryotes but seemingly missing among the Malawimonadidae, a lineage sister to Ancyromonadida in some phylogenies. The phylogeny inferred from the 18S rRNA gene associated A. sigmoides from Sugluk Inlet with several other strains originating from the Arctic. The study also unveiled the presence of a metagenomic sequence ascribed to bacteria in GenBank, but it was clearly a mitochondrial genome with a gene content highly similar to that of A. sigmoides, including the non-conserved open-reading frames. Discussion: After re-annotation, a phylogeny was inferred from mitochondrial protein sequences, and it strongly associated A. sigmoides with the misidentified organism, with the two being possibly conspecific or sibling species as they are more similar to one another than to species of the genus Malawimonas. Overall our phylogeny showed that the ice associated ancryomonads were clearly distinct from more southerly strains.

2.
Harmful Algae ; 95: 101817, 2020 05.
Article in English | MEDLINE | ID: mdl-32439060

ABSTRACT

In spring 2016, two silos containing liquid nitrogen-containing fertilizer collapsed on a harbor in Fredericia, Denmark. More than 2,750 tons of fertilizer spilled into inner Danish waters. A bloom of Pseudo-nitzschia occurred approximately one month after the incident. The bloom caused a 5-week quarantine of numerous mussel-harvesting areas along the eastern coast of Jutland. The levels of domoic acid measured up to 49 mg kg-1 in mussel meat after the bloom. In the months following the event, the species diversity of phytoplankton was low, while the abundance was high comprising few dominant species including Pseudo-nitzschia. The main part of the liquid nitrogen-containing compound was urea, chemically produced for agricultural use. To investigate the potential impact of urea on Pseudo-nitzschia, four strains, including one strain of P. delicatissima, two of P. seriata and one of P. obtusa, were exposed each to three concentrations of urea in a batch culture experiment: 10 µM, 20 µM and 100 µM N urea, and for comparison one concentration of nitrate (10 µM). Nitrate, ammonium, and urea were metabolized at different rates. Pseudo-nitzschia obtusa produced domoic acid and grew best at low urea concentrations. Both P. seriata strains had a positive correlation between urea concentration and growth rate, and the highest growth rate in the nitrate treatment. One strain of P. seriata produced domoic acid peaking at low N loads (10 µM N urea and 10 µM N nitrate). In conclusion, the ability to adapt to the available nitrogen source and retain a high growth rate was exceedingly varying and not only species-specific but also strain specific.


Subject(s)
Diatoms , Fertilizers , Nitrates , Phytoplankton , Urea
3.
BMC Mol Biol ; 20(1): 7, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808304

ABSTRACT

BACKGROUND: A major cause of phytoplankton mortality is predation by zooplankton. Strategies to avoid grazers have probably played a major role in the evolution of phytoplankton and impacted bloom dynamics and trophic energy transport. Certain species of the genus Pseudo-nitzschia produce the neurotoxin, domoic acid (DA), as a response to the presence of copepod grazers, suggesting that DA is a defense compound. The biosynthesis of DA comprises fusion of two precursors, a C10 isoprenoid geranyl pyrophosphate and L-glutamate. Geranyl pyrophosphate (GPP) may derive from the mevalonate isoprenoid (MEV) pathway in the cytosol or from the methyl-erythritol phosphate (MEP) pathway in the plastid. L-glutamate is suggested to derive from the citric acid cycle. Fragilariopsis, a phylogenetically related but nontoxic genus of diatoms, does not appear to possess a similar defense mechanism. We acquired information on genes involved in biosynthesis, precursor pathways and regulatory functions for DA production in the toxigenic Pseudo-nitzschia seriata, as well as genes involved in responses to grazers to resolve common responses for defense strategies in diatoms. RESULTS: Several genes are expressed in cells of Pseudo-nitzschia when these are exposed to predator cues. No genes are expressed in Fragilariopsis when treated similarly, indicating that the two taxa have evolved different strategies to avoid predation. Genes involved in signal transduction indicate that Pseudo-nitzschia cells receive signals from copepods that transduce cascading molecular precursors leading to the formation of DA. Five out of seven genes in the MEP pathway for synthesis of GPP are upregulated, but none in the conventional MEV pathway. Five genes with known or suggested functions in later steps of DA formation are upregulated. We conclude that no gene regulation supports that L-glutamate derives from the citric acid cycle, and we suggest the proline metabolism to be a downstream precursor. CONCLUSIONS: Pseudo-nitzschia cells, but not Fragilariopsis, receive and respond to copepod cues. The cellular route for the C10 isoprenoid product for biosynthesis of DA arises from the MEP metabolic pathway and we suggest proline metabolism to be a downstream precursor for L-glutamate. We suggest 13 genes with unknown function to be involved in diatom responses to grazers.


Subject(s)
Diatoms/genetics , Diatoms/metabolism , Kainic Acid/analogs & derivatives , Marine Toxins/genetics , Marine Toxins/metabolism , Metabolic Networks and Pathways/genetics , Erythritol/analogs & derivatives , Erythritol/metabolism , Herbivory , Kainic Acid/metabolism , Polyisoprenyl Phosphates/metabolism , Sugar Phosphates/metabolism
4.
Harmful Algae ; 79: 50-52, 2018 11.
Article in English | MEDLINE | ID: mdl-30420015

ABSTRACT

Copepods are important grazers on toxic phytoplankton and serve as vectors for algal toxins up the marine food web. Success of phytoplankton depends among other factors on protection against grazers like copepods, and same way copepod survival and population resilience relies on their ability to escape predators. Little is, however, known about the effect of toxins on the escape response of copepods. In this study we experimentally tested the hypothesis that the neurotoxin domoic acid (DA) produced by the diatom Pseudo-nitzschia affects escape responses of planktonic copepods. We found that the arctic copepods Calanus hyperboreus and C. glacialis reduced their escape response after feeding on a DA-producing diatom. The two species were not affected the same way; C. hyperboreus was affected after shorter exposure and less intake of DA. The negative effect on escape response was not related to the amount of DA accumulated in the copepods. Our results suggest that further research on the effects of DA on copepod behavior and DA toxicity mechanisms is required to evaluate the anti-grazing function of DA.


Subject(s)
Copepoda/physiology , Diatoms/chemistry , Escape Reaction/drug effects , Kainic Acid/analogs & derivatives , Neurotoxins/toxicity , Animals , Copepoda/drug effects , Food Chain , Kainic Acid/toxicity , Phytoplankton
5.
Harmful Algae ; 79: 64-73, 2018 11.
Article in English | MEDLINE | ID: mdl-30420018

ABSTRACT

Grazers can induce toxin (domoic acid, DA) production in diatoms. The toxic response has been observed in two species of Pseudo-nitzschia and was induced by Calanus copepods. In this study, interactions between diatoms and copepods were further explored using different species of diatoms and copepods. All herbivorous copepods induced toxin production, whereas exposure to carnivorous copepods did not. In line with this, increasing the number of herbivorous copepods resulted in even higher toxin production. The induced response is thus only elicited by copepods that pose a real threat to the responding cells, which supports that the induced toxin production in diatoms evolved as an inducible defense. The cellular toxin content in Pseudo-nitzschia was positively correlated to the concentration of a group of specific polar lipids called copepodamides that are excreted by the copepods. This suggests that copepodamides are the chemical cues responsible for triggering the toxin production. Carnivorous copepods were found to produce less or no copepodamides. Among the diatoms exposed to grazing herbivorous copepods, only two of six species of Pseudo-nitzschia and none of the Nitzschia or Fragilariopsis strains responded by producing DA, indicating that not all Pseudo-nitzschia species/strains are able to produce DA, and that different diatom species might have different strategies for coping with grazing pressure. Growth rate was negatively correlated to cellular domoic acid content indicating an allocation cost associated with toxin production. Long-term grazing experiments showed higher mortality rates of grazers fed toxic diatoms, supporting the hypothesis that DA production is an induced defense mechanism.


Subject(s)
Copepoda/physiology , Diatoms/physiology , Kainic Acid/analogs & derivatives , Animals , Biological Coevolution , Herbivory , Kainic Acid/metabolism , Kainic Acid/toxicity
6.
Mar Drugs ; 13(6): 3809-35, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26087022

ABSTRACT

Diatoms of the genus Pseudo-nitzschia produce domoic acid (DA), a toxin that is vectored in the marine food web, thus causing serious problems for marine organisms and humans. In spite of this, knowledge of interactions between grazing zooplankton and diatoms is restricted. In this study, we examined the interactions between Calanus copepodites and toxin producing Pseudo-nitzschia. The copepodites were fed with different concentrations of toxic P. seriata and a strain of P. obtusa that previously was tested to be non-toxic. The ingestion rates did not differ among the diets (P. seriata, P. obtusa, a mixture of both species), and they accumulated 6%-16% of ingested DA (up to 420 µg per dry weight copepodite). When P. seriata was exposed to the copepodites, either through physical contact with the grazers or separated by a membrane, the toxicity of P. seriata increased (up to 3300%) suggesting the response to be chemically mediated. The induced response was also triggered when copepodites grazed on another diatom, supporting the hypothesis that the cues originate from the copepodite. Neither pH nor nutrient concentrations explained the induced DA production. Unexpectedly, P. obtusa also produced DA when exposed to grazing copepodites, thus representing the second reported toxic polar diatom.


Subject(s)
Copepoda/physiology , Diatoms/physiology , Kainic Acid/analogs & derivatives , Marine Toxins/toxicity , Animals , Food Chain , Hydrogen-Ion Concentration , Kainic Acid/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...