Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(22): 15499-15510, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36321759

ABSTRACT

Electron donor-acceptor (EDA) complex-mediated single-electron transfer (SET) is a crucial method for generating carbon radicals. Hydrogen atom transfer (HAT) enables the direct generation of alkyl radicals. We report a dual-role EDA-SET/HAT photoreaction system for carbon-carbon bond formation using a phenol catalyst and aryl iodide. This system facilitates addition of alkyl radicals generated from ethers, amide, sulfide, and cycloalkane to arenes. Mechanistic studies revealed that EDA complex formation is mediated by halogen bonding between phenoxide and aryl iodide. Irradiation of the EDA complex with visible light generates an aryl radical, which abstracts a hydrogen atom from an sp3 carbon to form an alkyl radical.

2.
ACS Org Inorg Au ; 1(1): 23-28, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-36855634

ABSTRACT

Developed herein is a visible-light-driven synthesis of sulfides by an electron donor-acceptor/single electron transfer and hydrogen atom transfer combined system without transition metals and strong oxidants. This reaction proceeds through the excitation of an electron donor-acceptor complex between a thiolate and an aryl halide, followed by the hydrogen atom transfer from an alkane to the generated aryl radical.

3.
Cell ; 149(6): 1298-313, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22682250

ABSTRACT

Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.


Subject(s)
Aging/metabolism , Complement C1q/metabolism , Wnt Signaling Pathway , Animals , Complement C1s/metabolism , Humans , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mice , Serum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...