Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 286(36): 31598-609, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21768110

ABSTRACT

Directional migration of adherent cells on an extracellular matrix requires repeated formation and disassembly of focal adhesions (FAs). Directional migration of adherent cells We have identified ZF21 as a regulator of disassembly of FAs and cell migration, and increased expression of the gene has been linked to metastatic colon cancer. ZF21 is a member of a protein family characterized by the presence of the FYVE domain, which is conserved among Fab1p, YOPB, Vps27p, and EEA1 proteins, and has been shown to mediate the binding of such proteins to phosphoinositides in the lipid layers of cell membranes. ZF21 binds multiple factors that promote disassembly of FAs such as FAK, ß-tubulin, m-calpain, and SHP-2. ZF21 does not contain any other known protein motifs other than the FYVE domain, but a region of the protein C-terminal to the FYVE domain is sufficient to mediate binding to ß-tubulin. In this study, we demonstrate that the C-terminal region is important for the ability of ZF21 to induce disassembly of FAs and cell migration, and to promote an early step of experimental metastasis to the lung in mice. In light of the importance of the C-terminal region, we analyzed its ternary structure using NMR spectroscopy. We demonstrate that this region exhibits a structure similar to that of a canonical pleckstrin homology domain, but that it lacks a positively charged interface to bind phosphatidylinositol phosphate. Thus, ZF21 contains a novel noncanonical PH-like domain that is a possible target to develop a therapeutic strategy to treat metastatic cancer.


Subject(s)
Carrier Proteins/physiology , Focal Adhesions/pathology , Neoplasm Metastasis , Neoplasms/pathology , Amino Acid Motifs , Animals , Calpain/metabolism , Carrier Proteins/chemistry , Cell Line , Cell Movement , Focal Adhesion Kinase 1/metabolism , Humans , Integrin beta1/metabolism , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Mice , Phosphorylation , Protein Tyrosine Phosphatases/metabolism
2.
Nucleic Acids Res ; 39(4): 1538-53, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20926394

ABSTRACT

Human Transformer2-ß (hTra2-ß) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-ß specifically binds to two types of RNA sequences [the CAA and (GAA)(2) sequences]. We determined the solution structure of the hTra2-ß RRM (spanning residues Asn110-Thr201), which not only has a canonical RRM fold, but also an unusual alignment of the aromatic amino acids on the ß-sheet surface. We then solved the complex structure of the hTra2-ß RRM with the (GAA)(2) sequence, and found that the AGAA tetra-nucleotide was specifically recognized through hydrogen-bond formation with several amino acids on the N- and C-terminal extensions, as well as stacking interactions mediated by the unusually aligned aromatic rings on the ß-sheet surface. Further NMR experiments revealed that the hTra2-ß RRM recognizes the CAA sequence when it is integrated in the stem-loop structure. This study indicates that the hTra2-ß RRM recognizes two types of RNA sequences in different RNA binding modes.


Subject(s)
Nerve Tissue Proteins/chemistry , RNA-Binding Proteins/chemistry , RNA/chemistry , Amino Acid Motifs , Amino Acid Sequence , Base Sequence , Guanine/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Serine-Arginine Splicing Factors
3.
Structure ; 18(9): 1127-39, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20826339

ABSTRACT

The zinc finger CW (zf-CW) domain is a motif of about 60 residues that is frequently found in proteins involved in epigenetic regulation. Here, we determined the NMR solution structure of the zf-CW domain of the human zf-CW and PWWP domain containing protein 1 (ZCWPW1). The zf-CW domain adopts a new fold in which a zinc ion is coordinated tetrahedrally by four conserved Cys ligand residues. The tertiary structure of the zf-CW domain partially resembles that adopted by the plant homeo domain (PHD) finger bound to the histone tail, suggesting that the zf-CW domain and the PHD finger have similar functions. The solution structure of the complex of the zf-CW domain with the histone H3 tail peptide (1-10) with trimethylated K4 clarified its binding mode. Our structural and biochemical studies have identified the zf-CW domain as a member of the histone modification reader modules for epigenetic regulation.


Subject(s)
Histones/chemistry , Zinc Fingers , Amino Acid Sequence , Binding Sites , Epigenesis, Genetic , Histones/genetics , Histones/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary
4.
Biochemistry ; 49(32): 6953-62, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20695532

ABSTRACT

Protein disulfide isomerase (PDI) acts as folding catalyst and molecular chaperone for disulfide-containing proteins through the formation, breakage, and rearrangement of disulfide bonds. PDI has a modular structure comprising four thioredoxin domains, a, b, b', and a', followed by a short segment, c. The a and a' domains have an active site cysteine pair for the thiol-disulfide exchange reaction, which alters PDI between the reduced and oxidized forms, and the b' domain provides a primary binding site for substrate proteins. Although the structures and functions of PDI have studied, it is still argued whether the overall conformation of PDI depends on the redox state of the active site cysteine pair. Here, we report redox-dependent conformational and solvation changes of PDI from a thermophilic fungus elucidated by small-angle X-ray scattering (SAXS) analysis. The redox state and secondary structures of PDI were also characterized by nuclear magnetic resonance and circular dichroic spectroscopy, respectively. The oxidized form of PDI showed SAXS differences from the reduced form, and the low-resolution molecular models restored from the SAXS profiles differed between the two forms regarding the positions of the a'-c region relative to the a-b-b' region. The normal mode analysis of the crystal structure of yeast PDI revealed that the inherent motions of the a-b-b' and a'-c regions expose the substrate binding surface of the b' domain. The apparent molecular weight of the oxidized form estimated from SAXS was 1.1 times larger than that of the reduced form, whereas the radius of gyration (ca. 33 A) was nearly independent of the redox state. These results suggest that the conformation of PDI is controlled by the redox state of the active site cysteine residues in the a and a' domains and that the conformational alternation accompanies solvation changes in the active site cleft formed by the a, b, b', and a' domains. On the basis of the results presented here, we propose a mechanism explaining the observed redox-dependent conformational and solvation changes of PDI.


Subject(s)
Ascomycota/enzymology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/metabolism , Circular Dichroism , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Protein Structure, Secondary , Scattering, Small Angle
5.
J Struct Funct Genomics ; 11(2): 125-41, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20454865

ABSTRACT

The nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) fusion oncoprotein, formed by the t(2;5) chromosomal translocation in anaplastic large-cell lymphomas, has constitutive tyrosine kinase activity and interacts with a number of signaling molecules. One of the interacting partners of NPM-ALK is the adaptor protein, Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target (SNT), and mutations that deprive NPM-ALK of all three of the SNT-binding sites significantly reduced the transforming activity. In this study, the interactions of the three binding sites in NPM-ALK with the phosphotyrosine binding (PTB) domain of SNT-2 were analyzed. First, by isothermal titration calorimetry, we found that the phosphorylation-independent binding site in NPM-ALK interacts with the SNT-2 PTB domain more tightly than the phosphorylation-dependent binding sites. Second, the solution structure of the SNT-2 PTB domain in complex with the nonphosphorylated NPM-ALK peptide was determined by nuclear magnetic resonance spectroscopy. The NPM-ALK peptide interacts with the hydrophobic surface of the PTB domain and intermolecularly extends the PTB beta-sheet. This interaction mode is much broader and more extensive than those of the phosphorylation-dependent binding sites. Our results indicate that the higher binding activity of the phosphorylation-independent binding site is caused by additional hydrophobic interactions.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Phosphotyrosine/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Peptide Fragments , Phosphorylation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Protein-Tyrosine Kinases/genetics , Sequence Homology, Amino Acid
6.
J Struct Funct Genomics ; 11(2): 181-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20213426

ABSTRACT

Upon cold shock, the amounts of most proteins dramatically decrease from normal levels, but those of cold shock proteins (CSPs) and proteins containing cold-shock domains (CSDs) greatly increase. Although their biological function is still not completely clear, cold-shock proteins might control translation via RNA chaperoning. Many cold-shock proteins contain the motifs (Y/F)GFI and (V/F)(V/F)H, which are known as ribonucleoprotein (RNP)-1 and RNP-2 motifs implicated in RNA/DNA binding. We determined the solution NMR structures of all five constituent CSDs of the human UNR (upstream of N-ras) protein. The spatial arrangements of the sidechains in the RNP-1 and RNP-2 motifs are mostly conserved; however, the conformations of the following residues in the first CSD are different: F43 and H45 (the first phenylalanine residue and the histidine residue in the putative binding site RNP-2) and Y30 (the first residue in the putative binding site RNP-1). F43 and H45 affect each other, and H45 is further influenced by C46. The altered binding site of the first CSD, and its putatively enhanced intrinsic stability, may provide an explanation for the observation that the first CSD has 20-fold higher RNA-binding activity than the fifth CSD. It also lends support to the hypothesis that the UNR protein arose by repeated duplication of a protein that originally contained just one CSD, and that the proto-UNR protein acquired cysteine C46 by mutation during evolution.


Subject(s)
DNA-Binding Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , RNA-Binding Proteins/chemistry , Amino Acid Sequence , Binding Sites , Cold Temperature , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Molecular Sequence Data , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sequence Homology, Amino Acid , Solutions
7.
J Mol Biol ; 396(2): 361-74, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-19944705

ABSTRACT

Protein disulfide isomerase (PDI) is a major protein in the endoplasmic reticulum, operating as an essential folding catalyst and molecular chaperone for disulfide-containing proteins by catalyzing the formation, rearrangement, and breakage of their disulfide bridges. This enzyme has a modular structure with four thioredoxin-like domains, a, b, b', and a', along with a C-terminal extension. The homologous a and a' domains contain one cysteine pair in their active site directly involved in thiol-disulfide exchange reactions, while the b' domain putatively provides a primary binding site for unstructured regions of the substrate polypeptides. Here, we report a redox-dependent intramolecular rearrangement of the b' and a' domains of PDI from Humicola insolens, a thermophilic fungus, elucidated by combined use of nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) methods. Our NMR data showed that the substrates bound to a hydrophobic surface spanning these two domains, which became more exposed to the solvent upon oxidation of the active site of the a' domain. The hydrogen-deuterium exchange and relaxation data indicated that the redox state of the a' domain influences the dynamic properties of the b' domain. Moreover, the SAXS profiles revealed that oxidation of the a' active site causes segregation of the two domains. On the basis of these data, we propose a mechanistic model of PDI action; the a' domain transfers its own disulfide bond into the unfolded protein accommodated on the hydrophobic surface of the substrate-binding region, which consequently changes into a "closed" form releasing the oxidized substrate.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/metabolism , Ascomycota/enzymology , Ascomycota/metabolism , Binding Sites , Crystallography, X-Ray , Models, Biological , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Protein Folding , Protein Structure, Tertiary/physiology , Scattering, Small Angle , X-Ray Diffraction
8.
J Mol Biol ; 393(2): 478-95, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19683535

ABSTRACT

The Notch signaling pathway is critical for many developmental processes and requires complex trafficking of both Notch receptor and its ligands, Delta and Serrate. In Drosophila melanogaster, the endocytosis of Delta in the signal-sending cell is essential for Notch receptor activation. The Neuralized protein from D. melanogaster (Neur) is a ubiquitin E3 ligase, which binds to Delta through its first neuralized homology repeat 1 (NHR1) domain and mediates the ubiquitination of Delta for endocytosis. Tom, a Bearded protein family member, inhibits the Neur-mediated endocytosis through interactions with the NHR1 domain. We have identified the domain boundaries of the novel NHR1 domain, using a screening system based on our cell-free protein synthesis method, and demonstrated that the identified Neur NHR1 domain had binding activity to the 20-residue peptide corresponding to motif 2 of Tom by isothermal titration calorimetry experiments. We also determined the solution structure of the Neur NHR1 domain by heteronuclear NMR methods, using a (15)N/(13)C-labeled sample. The Neur NHR1 domain adopts a characteristic beta-sandwich fold, consisting of a concave five-stranded antiparallel beta-sheet and a convex seven-stranded antiparallel beta-sheet. The long loop (L6) between the beta6 and beta7 strands covers the hydrophobic patch on the concave beta-sheet surface, and the Neur NHR1 domain forms a compact globular fold. Intriguingly, in spite of the slight, but distinct, differences in the topology of the secondary structure elements, the structure of the Neur NHR1 domain is quite similar to those of the B30.2/SPRY domains, which are known to mediate specific protein-protein interactions. Further NMR titration experiments of the Neur NHR1 domain with the 20-residue Tom peptide revealed that the resonances originating from the bottom area of the beta-sandwich (the L3, L5, and L11 loops, as well as the tip of the L6 loop) were affected. In addition, a structural comparison of the Neur NHR1 domain with the first NHR domain of the human KIAA1787 protein, which is from another NHR subfamily and does not bind to the 20-residue Tom peptide, suggested the critical amino acid residues for the interactions between the Neur NHR1 domain and the Tom peptide. The present structural study will shed light on the role of the Neur NHR1 domain in the Notch signaling pathway.


Subject(s)
Drosophila Proteins/chemistry , Drosophila Proteins/physiology , Drosophila melanogaster/enzymology , Receptors, Notch/metabolism , Signal Transduction/physiology , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/physiology , Amino Acid Sequence , Animals , Drosophila Proteins/classification , Drosophila Proteins/metabolism , Magnetic Resonance Spectroscopy , Models, Biological , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Signal Transduction/genetics , Ubiquitin-Protein Ligases/classification , Ubiquitin-Protein Ligases/metabolism
9.
Protein Sci ; 18(1): 80-91, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19177353

ABSTRACT

The muscleblind-like (MBNL) proteins 1, 2, and 3, which contain four CCCH zinc finger motifs (ZF1-4), are involved in the differentiation of muscle inclusion by controlling the splicing patterns of several pre-mRNAs. Especially, MBNL1 plays a crucial role in myotonic dystrophy. The CCCH zinc finger is a sequence motif found in many RNA binding proteins and is suggested to play an important role in the recognition of RNA molecules. Here, we solved the solution structures of both tandem zinc finger (TZF) motifs, TZF12 (comprising ZF1 and ZF2) and TZF34 (ZF3 and ZF4), in MBNL2 from Homo sapiens. In TZF12 of MBNL2, ZF1 and ZF2 adopt a similar fold, as reported previously for the CCCH-type zinc fingers in the TIS11d protein. The linker between ZF1 and ZF2 in MBNL2 forms an antiparallel beta-sheet with the N-terminal extension of ZF1. Furthermore, ZF1 and ZF2 in MBNL2 interact with each other through hydrophobic interactions. Consequently, TZF12 forms a single, compact global fold, where ZF1 and ZF2 are approximately symmetrical about the C2 axis. The structure of the second tandem zinc finger (TZF34) in MBNL2 is similar to that of TZF12. This novel three-dimensional structure of the TZF domains in MBNL2 provides a basis for functional studies of the CCCH-type zinc finger motifs in the MBNL protein family.


Subject(s)
RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Zinc Fingers , Amino Acid Sequence , Binding Sites , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Sequence Analysis, Protein
10.
Proteins ; 74(1): 133-44, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18615715

ABSTRACT

Human RNA helicase II/Gu alpha (RH-II/Gu alpha) and RNA helicase II/Gu beta (RH-II/Gu beta) are paralogues that share the same domain structure, consisting of the DEAD box helicase domain (DEAD), the helicase conserved C-terminal domain (helicase_C), and the GUCT domain. The N-terminal regions of the RH-II/Gu proteins, including the DEAD domain and the helicase_C domain, unwind double-stranded RNAs. The C-terminal tail of RH-II/Gu alpha, which follows the GUCT domain, folds a single RNA strand, while that of RH-II/Gu beta does not, and the GUCT domain is not essential for either the RNA helicase or foldase activity. Thus, little is known about the GUCT domain. In this study, we have determined the solution structure of the RH-II/Gu beta GUCT domain. Structural calculations using NOE-based distance restraints and residual dipolar coupling-based angular restraints yielded a well-defined structure with beta-alpha-alpha-beta-beta-alpha-beta topology in the region for K585-A659, while the Pfam HMM algorithm defined the GUCT domain as G571-E666. This structure-based domain boundary revealed false positives in the sequence homologue search using the HMM definition. A structural homology search revealed that the GUCT domain has the RRM fold, which is typically found in RNA-interacting proteins. However, it lacks the surface-exposed aromatic residues and basic residues on the beta-sheet that are important for the RNA recognition in the canonical RRM domains. In addition, the overall surface of the GUCT domain is fairly acidic, and thus the GUCT domain is unlikely to interact with RNA molecules. Instead, it may interact with proteins via its hydrophobic surface around the surface-exposed tryptophan.


Subject(s)
DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , RNA/metabolism , Algorithms , Humans , Magnetic Resonance Spectroscopy , Protein Structure, Tertiary , Structural Homology, Protein
11.
J Biol Chem ; 283(40): 27165-78, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18650440

ABSTRACT

Fe65L1, a member of the Fe65 family, is an adaptor protein that interacts with the cytoplasmic domain of Alzheimer amyloid precursor protein (APP) through its C-terminal phosphotyrosine interaction/phosphotyrosine binding (PID/PTB) domain. In the present study, the solution structures of the C-terminal PID domain of mouse Fe65L1, alone and in complex with a 32-mer peptide (DAAVTPEERHLSKMQQNGYENPTYKFFEQMQN) derived from the cytoplasmic domain of APP, were determined using NMR spectroscopy. The C-terminal PID domain of Fe65L1 alone exhibits a canonical PID/PTB fold, whereas the complex structure reveals a novel mode of peptide binding. In the complex structure, the NPTY motif forms a type-I beta-turn, and the residues immediately N-terminal to the NPTY motif form an antiparallel beta-sheet with the beta5 strand of the PID domain, the binding mode typically observed in the PID/PTB.peptide complex. On the other hand, the N-terminal region of the peptide forms a 2.5-turn alpha-helix and interacts extensively with the C-terminal alpha-helix and the peripheral regions of the PID domain, representing a novel mode of peptide binding that has not been reported previously for the PID/PTB.peptide complex. The indispensability of the N-terminal region of the peptide for the high affinity of the PID-peptide interaction is consistent with NMR titration and isothermal calorimetry data. The extensive binding features of the PID domain of Fe65L1 with the cytoplasmic domain of APP provide a framework for further understanding of the function, trafficking, and processing of APP modulated by adapter proteins.


Subject(s)
Amyloid beta-Protein Precursor/chemistry , Nerve Tissue Proteins/chemistry , Nuclear Proteins/chemistry , Peptides/chemistry , Amino Acid Motifs/physiology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Protein Binding/physiology , Protein Folding , Protein Structure, Quaternary/physiology , Protein Structure, Tertiary/physiology
12.
Protein Sci ; 17(9): 1531-41, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18562638

ABSTRACT

The second WW domain in mammalian Salvador protein (SAV1 WW2) is quite atypical, as it forms a beta-clam-like homodimer. The second WW domain in human MAGI1 (membrane associated guanylate kinase, WW and PDZ domain containing 1) (MAGI1 WW2) shares high sequence similarity with SAV1 WW2, suggesting comparable dimerization. However, an analytical ultracentrifugation study revealed that MAGI1 WW2 (Leu355-Pro390) chiefly exists as a monomer at low protein concentrations, with an association constant of 1.3 x 10(2) M(-1). We determined its solution structure, and a structural comparison with the dimeric SAV1 WW2 suggested that an Asp residue is crucial for the inhibition of the dimerization. The substitution of this acidic residue with Ser resulted in the dimerization of MAGI1 WW2. The spin-relaxation data suggested that the MAGI1 WW2 undergoes a dynamic process of transient dimerization that is limited by the charge repulsion. Additionally, we characterized a longer construct of this WW domain with a C-terminal extension (Leu355-Glu401), as the formation of an extra alpha-helix was predicted. An NMR structural determination confirmed the formation of an alpha-helix in the extended C-terminal region, which appears to be independent from the dimerization regulation. A thermal denaturation study revealed that the dimerized MAGI1 WW2 with the Asp-to-Ser mutation gained apparent stability in a protein concentration-dependent manner. A structural comparison between the two constructs with different lengths suggested that the formation of the C-terminal alpha-helix stabilized the global fold by facilitating contacts between the N-terminal linker region and the main body of the WW domain.


Subject(s)
Cell Adhesion Molecules, Neuronal/chemistry , Cell Cycle Proteins/chemistry , Adaptor Proteins, Signal Transducing , Amino Acid Motifs/genetics , Amino Acid Sequence , Amino Acid Substitution , Cell Adhesion Molecules , Cell Adhesion Molecules, Neuronal/genetics , Dimerization , Genetic Variation , Guanylate Kinases , Hot Temperature , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Molecular Weight , Phenylalanine/chemistry , Protein Denaturation , Protein Folding , Protein Structure, Secondary/genetics , Protein Structure, Tertiary/genetics , Sequence Homology, Amino Acid , Serine/metabolism , Tryptophan/chemistry , Tyrosine/chemistry
13.
J Mol Biol ; 369(1): 222-38, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17428495

ABSTRACT

SWIRM is a conserved domain found in several chromatin-associated proteins. Based on their sequences, the SWIRM family members can be classified into three subfamilies, which are represented by Swi3, LSD1, and Ada2. Here we report the SWIRM structure of human MYb-like, Swirm and Mpn domain-containing protein-1 (MYSM1). The MYSM1 SWIRM structure forms a compact HTH-related fold comprising five alpha-helices, which best resembles the Swi3 SWIRM structure, among the known SWIRM structures. The MYSM1 and Swi3 SWIRM structures are more similar to the LSD1 structure than the Ada2alpha structure. The SWIRM domains of MYSM1 and LSD1 lacked DNA binding activity, while those of Ada2alpha and the human Swi3 counterpart, SMARCC2, bound DNA. The dissimilarity in the DNA-binding ability of the MYSM1 and SMARCC2 SWIRM domains might be due to a couple of amino acid differences in the last helix. These results indicate that the SWIRM family has indeed diverged into three structural subfamilies (Swi3/MYSM1, LSD1, and Ada2 types), and that the Swi3/MYSM1-type subfamily has further diverged into two functionally distinct groups. We also solved the structure of the SANT domain of MYSM1, and demonstrated that it bound DNA with a similar mode to that of the c-Myb DNA-binding domain.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , DNA/metabolism , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Solutions , Structure-Activity Relationship , Trans-Activators , Ubiquitin-Specific Proteases
14.
FEBS Lett ; 581(3): 462-8, 2007 Feb 06.
Article in English | MEDLINE | ID: mdl-17239860

ABSTRACT

The WW domain is known as one of the smallest protein modules with a triple-stranded beta-sheet fold. Here, we present the solution structure of the second WW domain from the mouse salvador homolog 1 protein. This WW domain forms a homodimer with a beta-clam-like motif, as evidenced by size exclusion chromatography, analytical ultracentrifugation and NMR spectroscopy. While typical WW domains are believed to function as monomeric modules that recognize proline-rich sequences, by using conserved aromatic and hydrophobic residues that are solvent-exposed on the surface of the beta-sheet, this WW domain buries these residues in the dimer interface.


Subject(s)
Cell Cycle Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Dimerization , In Vitro Techniques , Mice , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Homology, Amino Acid , Solutions , Thermodynamics
16.
Protein Sci ; 13(8): 2089-100, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15273307

ABSTRACT

GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins.


Subject(s)
Protein Kinases/chemistry , Sequence Alignment , Structural Homology, Protein , Amino Acid Sequence , Animals , Mice , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Serine-Threonine Kinases , Protein Structure, Secondary , Protein Structure, Tertiary , eIF-2 Kinase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...