Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 24(23): 5864-76, 2015 12.
Article in English | MEDLINE | ID: mdl-26518618

ABSTRACT

There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial overharvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbour high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.


Subject(s)
Gene Flow , Genetic Variation , Genetics, Population , Turtles/genetics , Animals , Bays , Maryland , Microsatellite Repeats , Mutation Rate , Population Density , Sequence Analysis, DNA , Spatio-Temporal Analysis , Virginia
2.
Br J Pharmacol ; 155(6): 804-13, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18695639

ABSTRACT

BACKGROUND AND PURPOSE: Soluble guanylyl cyclase (sGC) is a receptor for nitric oxide that generates cGMP. This second messenger molecule has established roles in cellular physiology; however, less is known about its effects in tumour cells. EXPERIMENTAL APPROACH: The effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one (NS2028), both selective sGC inhibitors on proliferation, death and migration were determined in prostate cancer cell lines. KEY RESULTS: Western blot analysis confirmed the presence of alpha1 and beta1 subunits of sGC in LNCaP and PC-3 cells. Sodium nitroprusside (SNP) increased cGMP accumulation in LNCaP and PC-3, but not DU-145 cells. SNP-stimulated cGMP production in LNCaP cells was dose-dependently reduced by ODQ, with more than 90% inhibition being observed at 0.1 microM. ODQ activated caspase-3 in all three cell lines, but not in normal prostate epithelial cells, at concentrations over 10 muM. High concentrations of ODQ also promoted DNA fragmentation and nucleosome accumulation in the cytosol of LNCaP cells. Interestingly, the chemically related inhibitor, NS2028 was without effect on caspase-3. In addition, ODQ inhibited LNCaP, Du145 and PC-3 cell growth. Finally, although fibroblast growth factor-2 did not enhance cGMP levels in LNCaP cells, its ability to stimulate LNCaP motility was abolished by ODQ. CONCLUSIONS AND IMPLICATIONS: These observations taken together suggest that the action of ODQ in LNCaP cells did not reflect sGC inhibition. We conclude that ODQ promotes cell death and inhibits growth and migration of prostate cancer cells and that these actions are independent of its effects on GMP levels.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclic GMP/metabolism , Enzyme Inhibitors/pharmacology , Guanylate Cyclase/antagonists & inhibitors , Oxadiazoles/pharmacology , Oxazines/pharmacology , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclic GMP/biosynthesis , DNA Fragmentation/drug effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Humans , Male , Nitroprusside/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA Interference , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...