Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 96(5): 1105-1115, 2020 09.
Article in English | MEDLINE | ID: mdl-32118302

ABSTRACT

Infrared-A (IRA), which can penetrate deeply into the human skin, is a major component of solar radiation and is recognized to promote photoaging of human dermis. To our knowledge, however, the cellular and molecular consequences of human epidermis exposure to IRA have not been clarified. Thus, we investigated whether IRA inhibits the proliferation of normal human epidermal keratinocytes (NHEKs). IRA irradiation ed in cell cycle arrest at G1 and a dose-dependent reduction in the proliferation of NHEKs. We found that mechanistic target of rapamycin complex 1 (mTORC1) was initially inactivated during IRA irradiation due to the formation of stress granules (SGs), and this inactivation was maintained for at least 6 h after irradiation due to Akt dephosphorylation. Furthermore, repeated exposure of human skin equivalents to IRA led to marked thinning of the epidermal cell layer. In conclusion, IRA irradiation inhibits mTORC1 activity possibly through two molecular mechanisms involving SG formation in the early-phase and subsequent Akt dephosphorylation. This sequential mechanism seems to cause G1 cell cycle arrest and a reduction in cell proliferation, supporting the hypothesis that the decreased proliferation of basal keratinocytes that occurs during skin aging might be partly attributable to IRA radiation.


Subject(s)
Cell Proliferation/radiation effects , Infrared Rays , Keratinocytes/radiation effects , Cells, Cultured , Humans , Keratinocytes/cytology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Skin/pathology , Skin/radiation effects , Skin Aging
2.
Arch Dermatol Res ; 300(9): 485-93, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18758798

ABSTRACT

The structure and function of the epidermis is maintained by cell renewal based on epidermal turnover. Epidermal turnover is delayed by aging, and it is thought that the delay of the epidermal turnover is a cause of aging alternation of skin. The epidermal turnover is related to the energy metabolism of epidermal basal cells. Adenosine 5'-triphosphate (ATP) is needed for cell renewal: cell division, and adenosine 5'-monophosphate (AMP) increases the amount of intracellular ATP. These findings suggest that AMP accelerates the epidermal turnover delayed by aging. This study investigated whether AMP and adenosine 5'-monophosphate disodium salt (AMP2Na) accelerates the epidermal turnover. An effect of AMP2Na on cell proliferation was examined by our counting of keratinocytes. An effect of AMP2Na on cell cycle was examined by our counting of basal cells in DNA synthetic period of hairless rats. The effects of AMP2Na (or AMP) on the epidermal turnover were examined by our measuring stratum corneum transit time by use of guinea pigs, and by our measuring stratum corneum surface area by use of hairless rats and in a clinical pharmacological study. The AMP2Na showed two different profiles on the proliferation of primary cultured keratinocytes. At a low concentration it induced cell growth, whereas at a high concentration it inhibited cell growth. The number of basal cells in the DNA synthetic period of AMP2Na was significantly higher than that of the vehicle in hairless rats. The stratum corneum transit time of AMP2Na was significantly shorter than that of the vehicle in guinea pigs. The corneocyte surface area of emulsion containing AMP2Na was significantly smaller than that of the vehicle in volunteers. We conclude that AMP promotes the cell proliferation and the cell cycle progression of epidermal basal cells and accelerates epidermal turnover safely. In addition, AMP is useful for skin rejuvenation in dermatology and aesthetic dermatology.


Subject(s)
Adenosine Monophosphate/pharmacology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Epidermal Cells , Adenosine Triphosphate/metabolism , Cells, Cultured , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Energy Metabolism , Epidermis/drug effects , Epidermis/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...