Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 26(7): 1124-1138, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38902423

ABSTRACT

Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.


Subject(s)
Oocytes , Ovary , Proteome , Proteostasis , Female , Animals , Oocytes/metabolism , Ovary/metabolism , Proteome/metabolism , Mice , Mice, Inbred C57BL , Aging/metabolism , Aging/genetics , Proteasome Endopeptidase Complex/metabolism , Cellular Senescence , Fertility , Proteomics/methods , Longevity/physiology
3.
Nat Cell Biol ; 25(3): 439-452, 2023 03.
Article in English | MEDLINE | ID: mdl-36732633

ABSTRACT

Accurate chromosome segregation during meiosis is crucial for reproduction. Human and porcine oocytes transiently cluster their chromosomes before the onset of spindle assembly and subsequent chromosome segregation. The mechanism and function of chromosome clustering are unknown. Here we show that chromosome clustering is required to prevent chromosome losses in the long gap phase between nuclear envelope breakdown and the onset of spindle assembly, and to promote the rapid capture of all chromosomes by the acentrosomal spindle. The initial phase of chromosome clustering is driven by a dynamic network of Formin-2- and Spire-nucleated actin cables. The actin cables form in the disassembling nucleus and migrate towards the nuclear centre, moving the chromosomes centripetally by interacting with their arms and kinetochores as they migrate. A cage of stable microtubule loops drives the late stages of chromosome clustering. Together, our data establish a crucial role for chromosome clustering in accurate progression through meiosis.


Subject(s)
Actins , Oocytes , Humans , Animals , Swine , Actins/genetics , Actins/metabolism , Oocytes/metabolism , Meiosis/genetics , Microtubules/metabolism , Kinetochores/metabolism , Chromosome Segregation , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Mammals/metabolism
4.
Science ; 378(6617): eabq4835, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264786

ABSTRACT

Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.


Subject(s)
Mitochondria , Oocytes , RNA, Messenger, Stored , Animals , Female , Hydrogels , Mitochondria/genetics , Mitochondria/metabolism , Oocytes/metabolism , RNA, Messenger, Stored/genetics , RNA, Messenger, Stored/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Humans , Mice , Swine , Cattle , Egg Proteins/genetics , Egg Proteins/metabolism
5.
Science ; 375(6581): eabj3944, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35143306

ABSTRACT

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.


Subject(s)
Cell Cycle Proteins/metabolism , Kinesins/deficiency , Oocytes/physiology , Oocytes/ultrastructure , Spindle Apparatus/physiology , Spindle Poles/physiology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Animals , Cattle , Dynactin Complex/metabolism , Dyneins/metabolism , Female , Humans , Kinesins/genetics , Kinesins/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/physiology , Microtubule-Organizing Center/ultrastructure , Microtubules/metabolism , Recombinant Proteins/metabolism , Spindle Apparatus/ultrastructure , Spindle Poles/ultrastructure , Swine
6.
Curr Biol ; 28(6): R275-R277, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29558647

ABSTRACT

Contractile actin networks take on various functions in cells. How disordered actin networks contract is still poorly understood. A recent study proposes a contractile mechanism that is driven by actin disassembly and required to prevent chromosome losses in starfish oocytes.


Subject(s)
Actins , Starfish , Actin Cytoskeleton , Animals , Chromosomes , Oocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...