Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 16: 864706, 2022.
Article in English | MEDLINE | ID: mdl-35968392

ABSTRACT

In light of the increasing evidence supporting a link between hearing loss and dementia, it is critical to gain a better understanding of the nature of this relationship. We have previously observed that following cochlear synaptopathy, the temporal auditory processing (e.g., auditory steady state responses, ASSRs), is sustained when reduced auditory input is centrally compensated. This central compensation process was linked to elevated hippocampal long-term potentiation (LTP). We further observed that, independently of age, central responsiveness to cochlear synaptopathy can differ, resulting in either a low or high capacity to compensate for the reduced auditory input. Lower central compensation resulted in poorer temporal auditory processing, reduced hippocampal LTP, and decreased recruitment of activity-dependent brain-derived neurotrophic factor (BDNF) expression in hippocampal regions (low compensators). Higher central compensation capacity resulted in better temporal auditory processing, higher LTP responses, and increased activity-dependent BDNF expression in hippocampal regions. Here, we aimed to identify modifying factors that are potentially responsible for these different central responses. Strikingly, a poorer central compensation capacity was linked to lower corticosterone levels in comparison to those of high compensators. High compensators responded to repeated placebo injections with elevated blood corticosterone levels, reduced auditory brainstem response (ABR) wave I amplitude, reduced inner hair cell (IHC) ribbon number, diminished temporal processing, reduced LTP responses, and decreased activity-dependent hippocampal BDNF expression. In contrast, the same stress exposure through injection did not elevate blood corticosterone levels in low compensators, nor did it reduce IHC ribbons, ABR wave I amplitude, ASSR, LTP, or BDNF expression as seen in high compensators. Interestingly, in high compensators, the stress-induced responses, such as a decline in ABR wave I amplitude, ASSR, LTP, and BDNF could be restored through the "memory-enhancing" drug phosphodiesterase 9A inhibitor (PDE9i). In contrast, the same treatment did not improve these aspects in low compensators. Thus, central compensation of age-dependent cochlear synaptopathy is a glucocorticoid and cyclic guanosine-monophosphate (cGMP)-dependent neuronal mechanism that fails upon a blunted stress response.

2.
Eur J Neurosci ; 54(3): 4755-4767, 2021 08.
Article in English | MEDLINE | ID: mdl-34043848

ABSTRACT

The plasma-membrane marker FM1-43 was employed to reveal the relative significance of different types of endocytic and transcytic mechanisms in outer hair cells (OHCs) of the guinea-pig cochlea. A double-barrel local perfusion system was used to label independently the apical or synaptic pole of the isolated OHC to study mechanisms of vesicle uptake at the poles and of vesicle trafficking along and across the cell. Treatment with an inhibitor of macropino- and phagocytosis, phenylarsine oxide, or of clathrin-mediated endocytic activity, concanavalin A, significantly reduced the dye uptake at both the apical and the synaptic poles, indicating the presence of both clathrin-independent and clathrin-mediated processes at both poles. However, measurement of uptake speed in the presence of the inhibitors suggested that clathrin-independent processes contribute more extensively to endocytosis at the basal pole than the apical pole. Treatment with an inhibitor of myosin VI, 2,4,6-triiodophenol, significantly delayed both the apicobasal and the basoapical fluorescence signals. However, treatment with an inhibitor of kinesin, monastrol, or of dynein, ciliobrevin D, significantly delayed the signals only in the basoapical direction. The myosinVI inhibitor, but neither the kinesin nor dynein inhibitors, significantly delayed the signals to the subsurface cisternae. That is, myosin VI carries vesicles in both longitudinal directions as well as radially to the subsurface cisternae, whereas kinesin and dynein participate primarily in basoapical trafficking. This fundamental information is essential for elucidating recycling mechanisms of specific proteins involved in establishing, controlling and maintaining the electromechanical action of OHCs and, therefore, is vital for understanding auditory perception.


Subject(s)
Endocytosis , Hair Cells, Auditory, Outer , Animals , Biological Transport , Cell Membrane/metabolism , Cochlea , Guinea Pigs
3.
J Physiol ; 599(7): 2015-2036, 2021 04.
Article in English | MEDLINE | ID: mdl-33559882

ABSTRACT

KEY POINTS: The aim was to determine whether detachment of the tectorial membrane (TM) from the organ of Corti in Tecta/Tectb-/- mice affects the biophysical properties of cochlear outer hair cells (OHCs). Tecta/Tectb-/- mice have highly elevated hearing thresholds, but OHCs mature normally. Mechanoelectrical transducer (MET) channel resting open probability (Po ) in mature OHC is ∼50% in endolymphatic [Ca2+ ], resulting in a large standing depolarizing MET current that would allow OHCs to act optimally as electromotile cochlear amplifiers. MET channel resting Po in vivo is also high in Tecta/Tectb-/- mice, indicating that the TM is unlikely to statically bias the hair bundles of OHCs. Distortion product otoacoustic emissions (DPOAEs), a readout of active, MET-dependent, non-linear cochlear amplification in OHCs, fail to exhibit long-lasting adaptation to repetitive stimulation in Tecta/Tectb-/- mice. We conclude that during prolonged, sound-induced stimulation of the cochlea the TM may determine the extracellular Ca2+ concentration near the OHC's MET channels. ABSTRACT: The tectorial membrane (TM) is an acellular structure of the cochlea that is attached to the stereociliary bundles of the outer hair cells (OHCs), electromotile cells that amplify motion of the cochlear partition and sharpen its frequency selectivity. Although the TM is essential for hearing, its role is still not fully understood. In Tecta/Tectb-/- double knockout mice, in which the TM is not coupled to the OHC stereocilia, hearing sensitivity is considerably reduced compared with that of wild-type animals. In vivo, the OHC receptor potentials, assessed using cochlear microphonics, are symmetrical in both wild-type and Tecta/Tectb-/- mice, indicating that the TM does not bias the hair bundle resting position. The functional maturation of hair cells is also unaffected in Tecta/Tectb-/- mice, and the resting open probability of the mechanoelectrical transducer (MET) channel reaches values of ∼50% when the hair bundles of mature OHCs are bathed in an endolymphatic-like Ca2+ concentration (40 µM) in vitro. The resultant large MET current depolarizes OHCs to near -40 mV, a value that would allow optimal activation of the motor protein prestin and normal cochlear amplification. Although the set point of the OHC receptor potential transfer function in vivo may therefore be determined primarily by endolymphatic Ca2+ concentration, repetitive acoustic stimulation fails to produce adaptation of MET-dependent otoacoustic emissions in vivo in the Tecta/Tectb-/- mice. Therefore, the TM is likely to contribute to the regulation of Ca2+ levels around the stereocilia, and thus adaptation of the OHC MET channel during prolonged sound stimulation.


Subject(s)
Stereocilia , Tectorial Membrane , Animals , Extracellular Matrix , Hair Cells, Auditory, Outer , Mice , Otoacoustic Emissions, Spontaneous , Transducers
4.
J Neurosci Res ; 98(9): 1764-1779, 2020 09.
Article in English | MEDLINE | ID: mdl-31663646

ABSTRACT

Glial-derived neurotrophic factor (GDNF) has been proposed as a potent neurotrophic factor with the potential to cure neurodegenerative diseases. In the cochlea, GDNF has been detected in auditory neurons and sensory receptor cells and its expression is upregulated upon trauma. Moreover, the application of GDNF in different animal models of deafness has shown its capacity to prevent hearing loss and promoted its future use in therapeutic trials in humans. In the present study we have examined the endogenous requirement of GDNF during auditory development in mice. Using a lacZ knockin allele we have confirmed the expression of GDNF in the cochlea including its sensory regions during development. Global inactivation of GDNF throughout the hearing system using a Foxg1-Cre line causes perinatal lethality but reveals no apparent defects during formation of the cochlea. Using TrkC-Cre and Atoh1-Cre lines, we were able to generate viable mutants lacking GDNF in auditory neurons or both auditory neurons and sensory hair cells. These mutants show normal frequency-dependent auditory thresholds. However, mechanoelectrical response properties of outer hair cells (OHCs) in TrkC-Cre GDNF mutants are altered at low thresholds. Furthermore, auditory brainstem wave analysis shows an abnormal increase of wave I. On the other hand, Atoh1-Cre GDNF mutants show normal OHC function but their auditory brainstem wave pattern is reduced at the levels of wave I, III and IV. These results show that GDNF expression during the development is required to maintain functional hearing at different levels of the auditory system.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor/deficiency , Glial Cell Line-Derived Neurotrophic Factor/physiology , Hearing/physiology , Animals , Auditory Threshold , Cochlea/metabolism , Ear, Inner/metabolism , Evoked Potentials, Auditory, Brain Stem , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Hair Cells, Auditory/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic
5.
Front Mol Neurosci ; 11: 260, 2018.
Article in English | MEDLINE | ID: mdl-30127717

ABSTRACT

Activity-dependent BDNF (brain-derived neurotrophic factor) expression is hypothesized to be a cue for the context-specificity of memory formation. So far, activity-dependent BDNF cannot be explicitly monitored independently of basal BDNF levels. We used the BLEV ( B DNF- live-exon- visualization) reporter mouse to specifically detect activity-dependent usage of Bdnf exon-IV and -VI promoters through bi-cistronic co-expression of CFP and YFP, respectively. Enriching acoustic stimuli led to improved peripheral and central auditory brainstem responses, increased Schaffer collateral LTP, and enhanced performance in the Morris water maze. Within the brainstem, neuronal activity was increased and accompanied by a trend for higher expression levels of Bdnf exon-IV-CFP and exon-VI-YFP transcripts. In the hippocampus BDNF transcripts were clearly increased parallel to changes in parvalbumin expression and were localized to specific neurons and capillaries. Severe acoustic trauma, in contrast, elevated neither Bdnf transcript levels, nor auditory responses, parvalbumin or LTP. Together, this suggests that critical sensory input is essential for recruitment of activity-dependent auditory-specific BDNF expression that may shape network adaptation.

6.
Cell Physiol Biochem ; 47(4): 1509-1532, 2018.
Article in English | MEDLINE | ID: mdl-29940568

ABSTRACT

BACKGROUND/AIMS: From invertebrates to mammals, Gαi proteins act together with their common binding partner Gpsm2 to govern cell polarization and planar organization in virtually any polarized cell. Recently, we demonstrated that Gαi3-deficiency in pre-hearing murine cochleae pointed to a role of Gαi3 for asymmetric migration of the kinocilium as well as the orientation and shape of the stereociliary ("hair") bundle, a requirement for the progression of mature hearing. We found that the lack of Gαi3 impairs stereociliary elongation and hair bundle shape in high-frequency cochlear regions, linked to elevated hearing thresholds for high-frequency sound. How these morphological defects translate into hearing phenotypes is not clear. METHODS: Here, we studied global and conditional Gnai3 and Gnai2 mouse mutants deficient for either one or both Gαi proteins. Comparative analyses of global versus Foxg1-driven conditional mutants that mainly delete in the inner ear and telencephalon in combination with functional tests were applied to dissect essential and redundant functions of different Gαi isoforms and to assign specific defects to outer or inner hair cells, the auditory nerve, satellite cells or central auditory neurons. RESULTS: Here we report that lack of Gαi3 but not of the ubiquitously expressed Gαi2 elevates hearing threshold, accompanied by impaired hair bundle elongation and shape in high-frequency cochlear regions. During the crucial reprogramming of the immature inner hair cell (IHC) synapse into a functional sensory synapse of the mature IHC deficiency for Gαi2 or Gαi3 had no impact. In contrast, double-deficiency for Gαi2 and Gαi3 isoforms results in abnormalities along the entire tonotopic axis including profound deafness associated with stereocilia defects. In these mice, postnatal IHC synapse maturation is also impaired. In addition, the analysis of conditional versus global Gαi3-deficient mice revealed that the amplitude of ABR wave IV was disproportionally elevated in comparison to ABR wave I indicating that Gαi3 is selectively involved in generation of neural gain during auditory processing. CONCLUSION: We propose a so far unrecognized complexity of isoform-specific and overlapping Gαi protein functions particular during final differentiation processes.


Subject(s)
Carrier Proteins/metabolism , Forkhead Transcription Factors/metabolism , GTP-Binding Protein alpha Subunit, Gi2/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Hair Cells, Auditory, Inner/metabolism , Hearing/physiology , Nerve Tissue Proteins/metabolism , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , Forkhead Transcription Factors/genetics , GTP-Binding Protein alpha Subunit, Gi2/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Hair Cells, Auditory, Inner/cytology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics
7.
FASEB J ; 32(6): 3005-3019, 2018 06.
Article in English | MEDLINE | ID: mdl-29401591

ABSTRACT

Systemic corticosteroids have been the mainstay of treatment for various hearing disorders for more than 30 yr. Accordingly, numerous studies have described glucocorticoids (GCs) and stressors to be protective in the auditory organ against damage associated with a variety of health conditions, including noise exposure. Conversely, stressors are also predictive risk factors for hearing disorders. How both of these contrasting stress actions are linked has remained elusive. Here, we demonstrate that higher corticosterone levels during acoustic trauma in female rats is highly correlated with a decline of auditory fiber responses in high-frequency cochlear regions, and that hearing thresholds and the outer hair cell functions (distortion products of otoacoustic emissions) are left unaffected. Moreover, when GC receptor (GR) or mineralocorticoid receptor (MR) activation was antagonized by mifepristone or spironolactone, respectively, GR, but not MR, inhibition significantly and permanently attenuated trauma-induced effects on auditory fiber responses, including inner hair cell ribbon loss and related reductions of early and late auditory brainstem responses. These findings strongly imply that higher corticosterone stress levels profoundly impair auditory nerve processing, which may influence central auditory acuity. These changes are likely GR mediated as they are prevented by mifepristone.-Singer, W., Kasini, K., Manthey, M., Eckert, P., Armbruster, P., Vogt, M. A., Jaumann, M., Dotta, M., Yamahara, K., Harasztosi, C., Zimmermann, U., Knipper, M., Rüttiger, L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.


Subject(s)
Cochlear Nerve/physiopathology , Evoked Potentials, Auditory, Brain Stem/drug effects , Glucocorticoids/antagonists & inhibitors , Hearing Disorders/physiopathology , Hearing Loss, Noise-Induced/physiopathology , Mifepristone/pharmacology , Animals , Cochlea/metabolism , Cochlea/pathology , Cochlea/physiopathology , Cochlear Nerve/metabolism , Cochlear Nerve/pathology , Female , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Hearing Disorders/chemically induced , Hearing Disorders/drug therapy , Hearing Disorders/metabolism , Hearing Loss, Noise-Induced/chemically induced , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Rats , Rats, Wistar , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism
8.
J Neurosci Methods ; 293: 310-320, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29054590

ABSTRACT

BACKGROUND: Fluorescence membrane markers are efficient tools for visualizing the dynamics of membrane recycling processes in living cells. The outer hair cell (OHC) - a bipolar epithelial cell in the cochlea - possesses endocytic activity at both its apical and basal poles. The best visual overview of transcytosis in the OHC is achieved when the cell is isolated, so that both the apical and the basal poles are in the same focal plane to allow confocal imaging. Until now, fluorescent markers were applied to the extracellular environment of isolated OHCs without distinguishing the apical and basal poles. The drawback of that configuration is that apicobasal and basoapical vesicle traffic labelled at the opposite poles cannot be visualized independently because the same fluorescent marker has access to both poles. NEW METHOD: A double-barrel, capillary perfusion system was developed to independently stain either one pole or both the apical and the basal poles of isolated OHCs using different types of fluorescence membrane markers. RESULTS: Producing laminar fluid flow, the double-barrel perfusor allows investigation of the dynamics of apicobasal and basoapical vesicle traffic independently and/or simultaneously in the same OHC. COMPARISON WITH EXISTING METHOD: This method offers a unique option for investigating bidirectional vesicle traffic in bipolar epithelial cells, which is superior to other already established labelling techniques. CONCLUSIONS: The double-barrel perfusion system, suitable for selectively staining a longitudinal section of the plasma membrane of an isolated bipolar epithelial cell, opens new possibilities for investigating cell labelling and intracellular vesicle traffic.


Subject(s)
Endocytosis , Hair Cells, Auditory, Outer/cytology , Hair Cells, Auditory, Outer/physiology , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Animals , Biological Transport , Cell Membrane , Electric Stimulation , Epithelial Cells/cytology , Epithelial Cells/physiology , Equipment Design , Fluorescent Dyes , Guinea Pigs , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Transport Vesicles
9.
Eur J Neurosci ; 43(8): 1062-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26869218

ABSTRACT

The basis of the extraordinary sensitivity and frequency selectivity of the cochlea is a chloride-sensitive protein called prestin which can produce an electromechanical response and which resides in the basolateral plasma membrane of outer hair cells (OHCs). The compound 9-anthracenecarboxylic acid (9-AC), an inhibitor of chloride channels, has been found to reduce the electromechanical response of the cochlea and the OHC mechanical impedance. To elucidate these 9-AC effects, the functional electromechanical status of prestin was assayed by measuring the nonlinear capacitance of OHCs from the guinea-pig cochlea and of prestin-transfected human embryonic kidney 293 (HEK 293) cells. Extracellular application of 9-AC caused reversible, dose-dependent and chloride-sensitive reduction in OHC nonlinear charge transfer, Qmax . Prestin-transfected cells also showed reversible reduction in Qmax . For OHCs, intracellular 9-AC application as well as reduced intracellular pH had no detectable effect on the reduction in Qmax by extracellularly applied 9-AC. In the prestin-transfected cells, cytosolic application of 9-AC approximately halved the blocking efficacy of extracellularly applied 9-AC. OHC inside-out patches presented the whole-cell blocking characteristics. Disruption of the cytoskeleton by preventing actin polymerization with latrunculin A or by decoupling of spectrin from actin with diamide did not affect the 9-AC-evoked reduction in Qmax . We conclude that 9-AC acts on the electromechanical transducer principally by interaction with prestin rather than acting via the cytoskeleton, chloride channels or pH. The 9-AC block presents characteristics in common with salicylate, but is almost an order of magnitude faster. 9-AC provides a new tool for elucidating the molecular dynamics of prestin function.


Subject(s)
Anthracenes/pharmacology , Chloride Channels/antagonists & inhibitors , Membrane Potentials , Proteins/metabolism , Animals , Cells, Cultured , Chloride Channels/metabolism , Electric Capacitance , Guinea Pigs , HEK293 Cells , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/physiology , Humans
10.
Histochem Cell Biol ; 140(2): 119-35, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23542924

ABSTRACT

The motor protein, prestin, situated in the basolateral plasma membrane of cochlear outer hair cells (OHCs), underlies the generation of somatic, voltage-driven mechanical force, the basis for the exquisite sensitivity, frequency selectivity and dynamic range of mammalian hearing. The molecular and structural basis of the ontogenetic development of this electromechanical force has remained elusive. The present study demonstrates that this force is significantly reduced when the immature subcellular distribution of prestin found along the entire plasma membrane persists into maturity, as has been described in previous studies under hypothyroidism. This observation suggests that cochlear amplification is critically dependent on the surface expression and distribution of prestin. Searching for proteins involved in organizing the subcellular localization of prestin to the basolateral plasma membrane, we identified cochlear expression of a novel truncated prestin splice isoform named prestin 9b (Slc26A5d) that contains a putative PDZ domain-binding motif. Using prestin 9b as the bait in a yeast two-hybrid assay, we identified a calcium/calmodulin-dependent serine protein kinase (CASK) as an interaction partner of prestin. Co-immunoprecipitation assays showed that CASK and prestin 9b can interact with full-length prestin. CASK was co-localized with prestin in a membrane domain where prestin-expressing OHC membrane abuts prestin-free OHC membrane, but was absent from this area for thyroid hormone deficiency. These findings suggest that CASK and the truncated prestin splice isoform contribute to confinement of prestin to the basolateral region of the plasma membrane. By means of such an interaction, the basal junction region between the OHC and its Deiter's cell may contribute to efficient generation of somatic electromechanical force.


Subject(s)
Anion Transport Proteins/metabolism , Electricity , Guanylate Kinases/metabolism , Hair Cells, Auditory, Outer/physiology , Mechanical Phenomena , Vestibular Nucleus, Lateral/cytology , Vestibular Nucleus, Lateral/metabolism , Animals , Anion Transport Proteins/analysis , Anion Transport Proteins/genetics , Cells, Cultured , Female , Guanylate Kinases/analysis , Guanylate Kinases/genetics , HEK293 Cells , Hair Cells, Auditory, Outer/chemistry , Hair Cells, Auditory, Outer/cytology , Humans , Immunohistochemistry , Mice , Mice, Inbred Strains , Molecular Motor Proteins/analysis , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , Rats , Rats, Wistar , Sulfate Transporters , Vestibular Nucleus, Lateral/chemistry
11.
Biomaterials ; 31(9): 2549-54, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20061016

ABSTRACT

Decellularized xenogeneic tissue represents an interesting material for heart valve tissue engineering. The prospect objective is removal of all viable cells while preserving extracellular matrix (ECM) integrity. The major concerns of all decellularization protocols remain ECM disruption, immunogenicity and thrombogenicity. Accordingly the aim of this study was visualization of ultrastructural ECM disruption and human immune response and thrombogenicity using different decellularization protocols of porcine heart valves. Porcine pulmonary leaflets were decellularized with four different protocols: sodium deoxycholate, sodium dedecylsulfate, trypsin/EDTA, and trypsin-detergent-nuclease. Then the tissues were processed for histology and two-photon laser scanning microscopy (LSM). For thrombogenicity and immunogenicity testing tissues were incubated with human blood. The histological examination revealed no remaining cells and no significant differences in the ECM histoarchitecture in any group. LSM detected significant ECM alterations in all groups except sodium deoxycholate group with an almost completely preserved ECM. There was no increased immunogenicity between fresh and decellularized tissue. Compared to GA-fixed tissue however significantly increased immune responses and thrombogenicity was observed in all protocols. From our experiment, sodium deoxycholate enables cell removal with almost complete preservation of ECM structures. And all of these four decellularization protocols affected human immunological response and increased thrombogenicity.


Subject(s)
Heart Valves/cytology , Heart Valves/ultrastructure , Thrombin/metabolism , Animals , Cattle , Erythrocyte Count , Heart Valves/immunology , Humans , Leukocyte Count , Microscopy, Confocal , Photons , Platelet Count , Pulmonary Valve , Sus scrofa
12.
Tissue Eng Part C Methods ; 16(4): 705-10, 2010 Aug.
Article in English | MEDLINE | ID: mdl-19803792

ABSTRACT

Multiphoton imaging is a powerful tool for three-dimensional visualization of extracellular matrix components such as collagen and elastin in fresh, nonfixed, and nonembedded tissues. We have previously published data on the induction of the second harmonic generation signal of collagen and autofluorescence of elastin using a tunable multiphoton laser system. Without staining, a second harmonic generation signal was detected for collagen when excited at wavelength lambda(ex) = 840 nm. Switching the excitation wavelength to 760 nm enabled visualization of elastic fiber structures. A limitation of this technology is the laser-tuning process that requires calibration of the system in between the studies. Now we have developed a facilitated method for studying tissues and tissue equivalents that enables simultaneous visualization of collagen and elastin structures using only a single excitation wavelength of 840 nm in combination with two different band-pass filters. This facilitated method will expand the range of application by reducing required time and expenses for the laser system without reducing its capability.


Subject(s)
Blood Vessels/metabolism , Collagen/metabolism , Diagnostic Imaging/methods , Elastin/metabolism , Animals , Spectrometry, Fluorescence , Sus scrofa
13.
Eur J Neurosci ; 23(10): 2712-22, 2006 May.
Article in English | MEDLINE | ID: mdl-16817874

ABSTRACT

Outer hair cells (OHCs), the sensory-motor cells responsible for the extraordinary frequency selectivity and dynamic range of the cochlea, rapidly endocytose membrane and protein at their apical surface. Endocytosis and transcytosis in isolated OHCs from the mature guinea-pig cochlea were investigated using the amphipathic membrane probe FM1-43. We observed membrane transport from the apical surface to both the basolateral wall and the subnuclear pole. By double-labelling with DiOC6, a stain for endoplasmic reticulum, and aspiration of the plasma membrane, we showed that the basolateral target was the subsurface cisternae. The fluorescent signal was about three times weaker at the basal than at the apical pole. The speed of vesicle transport to the subnuclear pole was approximately 0.4 microm/s. Changing extracellular Ca2+ concentration from 25 microM to 2 mM accelerated rapid endocytosis. Extracellular application of BAPTA-AM (25 microM), an intracellular Ca2+ chelator, and TFP (20 microM), a specific inhibitor of calmodulin, reduced endocytic activity, as did depolarization of the whole cell. The presence of extracellular Cd2+ (200 microM), a Ca2+-channel blocker, had no effect on the voltage dependence of endocytosis at the apical pole, and inhibited the voltage dependence at the subnuclear pole. These results suggest that rapid endocytosis is a Ca2+/calmodulin-dependent process, with extracellular Ca2+ entering through voltage-gated Ca2+ channels at the basal pole. The two distinct destinations of endocytosed membrane are consistent with the functional polarization of the OHC, with the basolateral wall being dedicated to electromechanical transduction and the subnuclear pole being dedicated to electrochemical transduction processes.


Subject(s)
Cell Membrane/metabolism , Endocytosis/physiology , Hair Cells, Auditory, Outer/metabolism , Mechanotransduction, Cellular/physiology , Protein Transport/physiology , Animals , Calcium/metabolism , Calcium Channels/drug effects , Calcium Channels/metabolism , Calmodulin/metabolism , Cell Membrane/drug effects , Cells, Cultured , Chelating Agents/pharmacology , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Endocytosis/drug effects , Guinea Pigs , Hair Cells, Auditory, Outer/drug effects , Mechanotransduction, Cellular/drug effects , Microscopy, Confocal , Patch-Clamp Techniques , Protein Transport/drug effects
14.
Brain Res Bull ; 67(1-2): 126-32, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16140171

ABSTRACT

Norfluoxetine is the most important active metabolite of the widely used antidepressant fluoxetine but little is known about its pharmacological actions. In this study the anticonvulsant actions of norfluoxetine and fluoxetine were studied and compared to those of phenytoin and clonazepam in pentylenetetrazol-induced mouse epilepsy models. Pretreatment with fluoxetine or norfluoxetine (20mg/kg s.c.), as well as phenytoin (30 mg/kg s.c.) and clonazepam (0.1mg/kg s.c.) significantly increased both the rate and duration of survival, demonstrating a significant protective effect against pentylenetetrazol-induced epilepsy. These effects of norfluoxetine were similar to those of fluoxetine. According to the calculated combined protection scores, both norfluoxetine and fluoxetine were effective from the concentration of 10mg/kg, while the highest protective action was observed with clonazepam. Effects of norfluoxetine and fluoxetine on voltage-gated Ca2+ channels were evaluated by measuring peak Ba2+ current flowing through the Ca2+ channels upon depolarization using whole cell voltage clamp in enzymatically isolated rat cochlear neurons. The current was reduced equally in a concentration-dependent manner by norfluoxetine (EC50=20.4+/-2.7 microM, Hill coefficient=0.86+/-0.1) and fluoxetine (EC50=22.3+/-3.6 microM, Hill coefficient=0.87+/-0.1). It was concluded that the efficacy of the two compounds in neuronal tissues was equal, either in preventing seizure activity or in blocking the neuronal Ca2+ channels.


Subject(s)
Calcium Channels/drug effects , Cochlear Nucleus/drug effects , Epilepsy/drug therapy , Fluoxetine/analogs & derivatives , Fluoxetine/pharmacology , Neurons, Afferent/drug effects , Animals , Anticonvulsants/pharmacology , Barium/metabolism , Barium/pharmacology , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cells, Cultured , Clonazepam/pharmacology , Cochlear Nucleus/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Epilepsy/chemically induced , Epilepsy/physiopathology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Neurons, Afferent/metabolism , Patch-Clamp Techniques , Phenytoin/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology
15.
Otolaryngol Head Neck Surg ; 132(5): 701-6, 2005 May.
Article in English | MEDLINE | ID: mdl-15886621

ABSTRACT

OBJECTIVE: To test the application of the nerve-muscle pedicle (NMP) technique for selective reinnervation of previously denervated posterior cricoarytenoid (PCA) muscle. METHODS: The left recurrent laryngeal nerve (RLN) was severed in 5 mongrel dogs, and an ansa cervicalis-sternohyoid muscle pedicle was sutured to the left PCA muscle. Three dogs underwent a sham operation. Videolaryngoscopy was performed, and electromyographic data were collected after 1 year on average. Finally, histologic analysis of the NMP was performed. RESULTS: The video records showed the return of mobility of the PCA muscle reinnervated by the NMP. EMG data as to show evoked polyphasic potentials showed also evidence of reinnervation of the PCA muscle. With immunohistochemical reaction (antineurofilament antibody+biotin) we could show neurofilaments and motor endplates in both sides in all 5 animals. CONCLUSIONS: The NMP technique could eliminate the need for arytenoidectomy and laterofixation in patients with unilateral or bilateral vocal fold paralysis. The quality of life and voice may be improved.


Subject(s)
Laryngeal Muscles/innervation , Peripheral Nerves/transplantation , Animals , Cricoid Cartilage/innervation , Dogs , Electromyography , Female , Humans , Immunohistochemistry , Male , Motor Endplate/metabolism
16.
Int J Mol Med ; 11(4): 535-42, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12632110

ABSTRACT

Racemic fluoxetine is a widely used SSRI antidepressant compound having also anticonvulsant effect. In addition, it was shown that it blocked several types of voltage gated ion channels including neural and cardiac calcium channels. In the present study the effects of enantiomers of fluoxetine (R(-)-fluoxetine and S(+)-fluoxetine) were compared on neuronal and cardiac voltage-gated Ca2+ channels using the whole cell configuration of patch clamp techniques, and the anticonvulsant action of these enantiomers was also evaluated in a mouse epilepsy model. In isolated pyramidal neurons of the dorsal cochlear nucleus of the rat the effect of fluoxetine (S(+), R(-) and racemic) was studied on the Ca2+ channels by measuring peak Ba2+ current during ramp depolarizations. All forms of fluoxetine reduced the Ba2+ current of the pyramidal cells in a concentration-dependent manner, with a Kd value of 22.3+/-3.6 microM for racemic fluoxetine. This value of Kd was higher by one order of magnitude than found in cardiac myocytes with fluoxetine enantiomers (2.4+/-0.1 and 2.8+/-0.2 microM). Difference between the effects of the two enantiomers on neuronal Ba2+ current was observed only at 5 microM concentration: R(-)-fluoxetine inhibited 28+/-3% of the peak current, while S(+)-fluoxetine reduced the current by 18+/-2% (n=13, P<0.05). In voltage clamped canine ventricular cardiomyocytes both enantiomers of fluoxetine caused a reversible concentration-dependent block of the peak Ca2+ current measured at 0 mV. Significant differences between the two enantiomers in this blocking effect was observed at low concentrations only: S(+)-fluoxetine caused a higher degree of block than R(-)-fluoxetine (56.3+/-2.2% versus 49.1+/-2.2% and 95.5+/-0.9% versus 84.5+/-3.1% block with 3 and 10 microM S(+) and R(-)-fluoxetine, respectively, P<0.05, n=5). Studied in current clamp mode, micromolar concentrations of fluoxetine shortened action potential duration of isolated ventricular cells, while higher concentrations also suppressed maximum velocity of depolarization and action potential amplitude. This shortening effect was significantly greater in the case of S(+) than R(-)-fluoxetine at 1 and 3 microM concentrations, whereas no differences in their effects on depolarization were observed. In pentylenetetrazole-induced mouse epilepsy model fluoxetine pretreatment significantly increased the 60 min survival rate, survival duration and seizure latency. These effects were more pronounced with the R(-) than the S(+) enantiomer. The results indicate that fluoxetine exerts much stronger suppressive effect on cardiac than neuronal calcium channels. At micromolar concentrations (between 1 and 10 microM) R(-)-fluoxetine is more effective than the S(+) enantiomer on neuronal, while less effective on cardiac calcium channels. The stronger anticonvulsant effect of the R(-) enantiomer may, at least partially, be explained by these differences. Used as an antidepressant or anticonvulsant drug, less severe cardiac side-effects are anticipated with the R(-) enantiomer.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Calcium Channels/drug effects , Fluoxetine/pharmacology , Myocytes, Cardiac/drug effects , Neurons/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Anticonvulsants/pharmacology , Barium/metabolism , Calcium/metabolism , Dogs , Rats
17.
Brain Res Brain Res Protoc ; 10(3): 139-47, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12565684

ABSTRACT

In the present study step-by-step instructions are provided for a preparative technique employed for the removal of the spiral ganglion from the inner ear of the guinea pig. Removal of the temporal bone is followed by opening of the bulla and excision of the modiolus. All major steps of the technique are illustrated with photographs. A procedure to obtain surviving, acutely separated spiral ganglion neurones is also described. By this procedure small tissue pieces are removed from the modiolus which contain the spiral ganglion neurones. The tissue fragments then undergo a mild enzyme treatment (collagenase and pronase). After the enzyme exposure, the tissue pieces are gently triturated, and the isolated cells are allowed to settle. Poly-D-lysine ensured the firm attachment of the spiral ganglion cells to the cover-slips. The application of this adhesive coating seemed to be desirable in functional studies when microelectrode techniques and/or rapid exchange of the extracellular solution were employed.


Subject(s)
Dissection/methods , Spiral Ganglion/cytology , Animals , Cell Separation , Electrophysiology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Guinea Pigs , Indicators and Reagents , Male , Membranes/physiology , Microscopy
18.
Brain Res ; 930(1-2): 123-33, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11879802

ABSTRACT

Cytoplasmic [Ca(2+)] ([Ca(2+)](i)) was measured using Fura-2 in pyramidal neurones isolated from the rat dorsal cochlear nucleus (DCN). The kinetic properties of Ca(2+) removal following K(+) depolarization-induced Ca(2+) transients were characterized by fitting exponential functions to the decay phase. The removal after small transients (<82 nM peak [Ca(2+)](i)) had monophasic time course (time constant of 6.43 +/- 0.48 s). In the cases of higher Ca(2+) transients biphasic decay was found. The early time constant decreased (from 3.09 +/- 0.26 to 1.46 +/- 0.11 s) as the peak intracellular [Ca(2+)] increased. The value of the late time constant was 18.15 +/- 1.60 s at the smallest transients, and showed less dependence on [Ca(2+)](i). Blockers of Ca(2+) uptake into intracellular stores (thapsigargin and cyclopiazonic acid) decreased the amplitude of the Ca(2+) transients and slowed their decay. La(3+) (3 mM) applied extracellularly during the declining phase dramatically changed the time course of the Ca(2+) transients as a plateau developed and persisted until the La(3+) was present. When the other Ca(2+) removal mechanisms were available, reduction of the external [Na(+)] to inhibit the Na(+)/Ca(2+) exchange resulted in a moderate increase of the time constants. It is concluded that in the isolated pyramidal neurones of the DCN the removal of Ca(2+) depends mainly on the activity of Ca(2+) pump mechanisms.


Subject(s)
Calcium Channels/physiology , Calcium Signaling/drug effects , Cochlear Nucleus/physiology , Pyramidal Cells/physiology , Animals , Calcium Channels/drug effects , Calcium-Transporting ATPases/drug effects , Calcium-Transporting ATPases/metabolism , Cation Transport Proteins , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Separation , Cochlear Nucleus/cytology , Cochlear Nucleus/drug effects , Electric Stimulation , Enzyme Inhibitors/pharmacology , Kinetics , Patch-Clamp Techniques , Plasma Membrane Calcium-Transporting ATPases , Pyramidal Cells/drug effects , Rats , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Thapsigargin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...