Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Public Health ; 49(7): 1330-1338, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33083300

ABSTRACT

BACKGROUND: Air pollution have led to severe problem of adverse health effect in the world. This study aimed to conduct the health risk assessment, cancer risk analysis, and non-cancer risk for exposure to volatile organic compounds (VOCs) and hydrogen sulfide (H 2 S) in petrochemical industry. METHODS: In this cross-sectional research, 123 samples were collected in the ambient air in Iran during winter 2016. For sampling and analysis of VOCs and H 2 S, 3 methods (numbers 1500, 1501, and 6013) presented by the National Institute of Occupational Safety and Health (NIOSH) were used. For determination of risk assessment of chemical pollutants, semi-quantitative method presented by the Occupational Safety and Health Division, Singapore was used. Finally, for calculation of cancer risk analysis, Chronic Daily Intake (CDI) and calculation of non-cancer risk, Exposure Concentration (EC) were used. RESULTS: Average concentration of benzene (2.12±0.95) in breathing zone of workers were higher than the Threshold Limit Values-Time Weighted Average (TLV-TWA) (P<0.05). Among chemical substance, benzene had very high rank of risk in petrochemical industry. Rank of risk for H 2 S, toluene, and xylene present in the breathing zone of workers was low. The mean cancer risk for workers exposed to benzene was estimated 8.78×10-3, in other words, 8.7 cancer per 1000 i.e. higher than the acceptable standard of 10-6. In our study, non-cancer risk for BTX was higher than the acceptable standard of 1. CONCLUSION: In particular, overall cancer and toxic risk can be associated with long term exposure to benzene.

2.
Iran J Public Health ; 47(2): 237-245, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29445634

ABSTRACT

BACKGROUND: This study estimated the prevalence of respiratory symptoms and disorders among workers exposed to exposure to volatile organic compound (VOCs) in an automobile manufacturing factory in Tehran, Iran in 2016. METHODS: Subjects of this case-control research were included 80 samples including 40 workers exposed to different level of BTEX as well as 40 unexposed individuals were considered as control group. Methods 1501 and 7602 presented by the National Institute of Occupational Safety and Health (NIOSH) were used for the sampling and analysis of compounds in the air. Gas Chromatography-Flame Ionization Detector (GC-FID) was used for analysis of compounds of interest. Six silica samples were collected during the campaign. Silica analyses were performed by using visible absorption spectrophotometry system. Lung functions were evaluated for 80 workers (40 exposed, 40 nonexposed) using spirometry system. RESULTS: The average amount of total dust and free silica measured in factory were 7.3±1.04 mg.m-3 and 0.017±0.02 mg.m-3 respectively. Average benzene, toluene, ethyl-benzene and xylene exposure levels in exposed subject's median were 0.775±0.12, 1.2±2.08, 45.8±8.5, and 42.5±23.9 ppm respectively. Statistical tests showed significant difference between pulmonary function tests (except PEF) of exposed and non-exposed individuals before and after employment (P<0.05). Workers exposed to VOCs presented lower levels of FVC, VC, and PEF than the control group except FEV1/FVC%, FEV1, FEF2575 and FEV1/VC%. CONCLUSION: Decline in lung volumes and respiratory symptoms, significant difference associated with the exposure to dust or gas, duration of exposure, and smoking habit. Therefore, lung function tests should be performed before and after the employment to identify sensitive workers candidates.

SELECTION OF CITATIONS
SEARCH DETAIL
...