Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 25(Pt 2): 570-579, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29488939

ABSTRACT

The FemtoMAX beamline facilitates studies of the structural dynamics of materials. Such studies are of fundamental importance for key scientific problems related to programming materials using light, enabling new storage media and new manufacturing techniques, obtaining sustainable energy by mimicking photosynthesis, and gleaning insights into chemical and biological functional dynamics. The FemtoMAX beamline utilizes the MAX IV linear accelerator as an electron source. The photon bursts have a pulse length of 100 fs, which is on the timescale of molecular vibrations, and have wavelengths matching interatomic distances (Å). The uniqueness of the beamline has called for special beamline components. This paper presents the beamline design including ultrasensitive X-ray beam-position monitors based on thin Ce:YAG screens, efficient harmonic separators and novel timing tools.

2.
Appl Spectrosc ; 71(9): 2051-2075, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28714316

ABSTRACT

We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.


Subject(s)
Microscopy, Electron/instrumentation , Nanostructures , Nanotechnology/instrumentation , Spectrum Analysis/instrumentation , Graphite , Microfluidic Analytical Techniques , Silicon Compounds
3.
Opt Express ; 20(11): 12048-58, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22714191

ABSTRACT

High bunch charge, femtosecond, electron pulses were generated using a 95 kV electron gun with an S-band RF rebunching cavity. Laser ponderomotive scattering in a counter-propagating beam geometry is shown to provide high sensitivity with the prerequisite spatial and temporal resolution to fully characterize, in situ, both the temporal profile of the electron pulses and RF time timing jitter. With the current beam parameters, we determined a temporal Instrument Response Function (IRF) of 430 fs FWHM. The overall performance of our system is illustrated through the high-quality diffraction data obtained for the measurement of the electron-phonon relaxation dynamics for Si (001).


Subject(s)
Lasers , Electrons , Equipment Design , Equipment Failure Analysis
4.
Acta Crystallogr A ; 66(Pt 2): 137-56, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20164638

ABSTRACT

Recent advances in high-intensity electron and X-ray pulsed sources now make it possible to directly observe atomic motions as they occur in barrier-crossing processes. These rare events require the structural dynamics to be triggered by femtosecond excitation pulses that prepare the system above the barrier or access new potential energy surfaces that drive the structural changes. In general, the sampling process modifies the system such that the structural probes should ideally have sufficient intensity to fully resolve structures near the single-shot limit for a given time point. New developments in both source intensity and temporal characterization of the pulsed sampling mode have made it possible to make so-called 'molecular movies', i.e. measure relative atomic motions faster than collisions can blur information on correlations. Strongly driven phase transitions from thermally propagated melting to optically modified potential energy surfaces leading to ballistic phase transitions and bond stiffening are given as examples of the new insights that can be gained from an atomic level perspective of structural dynamics. The most important impact will likely be made in the fields of chemistry and biology where the central unifying concept of the transition state will come under direct observation and enable a reduction of high-dimensional complex reaction surfaces to the key reactive modes, as long mastered by Mother Nature.

5.
Nature ; 458(7234): 56-9, 2009 Mar 05.
Article in English | MEDLINE | ID: mdl-19262668

ABSTRACT

The development of X-ray and electron diffraction methods with ultrahigh time resolution has made it possible to map directly, at the atomic level, structural changes in solids induced by laser excitation. This has resulted in unprecedented insights into the lattice dynamics of solids undergoing phase transitions. In aluminium, for example, femtosecond optical excitation hardly affects the potential energy surface of the lattice; instead, melting of the material is governed by the transfer of thermal energy between the excited electrons and the initially cold lattice. In semiconductors, in contrast, exciting approximately 10 per cent of the valence electrons results in non-thermal lattice collapse owing to the antibonding character of the conduction band. These different material responses raise the intriguing question of how Peierls-distorted systems such as bismuth will respond to strong excitations. The evolution of the atomic configuration of bismuth upon excitation of its A(1g) lattice mode, which involves damped oscillations of atoms along the direction of the Peierls distortion of the crystal, has been probed, but the actual melting of the material has not yet been investigated. Here we present a femtosecond electron diffraction study of the structural changes in crystalline bismuth as it undergoes laser-induced melting. We find that the dynamics of the phase transition depend strongly on the excitation intensity, with melting occurring within 190 fs (that is, within half a period of the unperturbed A(1g) lattice mode) at the highest excitation. We attribute the surprising speed of the melting process to laser-induced changes in the potential energy surface of the lattice, which result in strong acceleration of the atoms along the longitudinal direction of the lattice and efficient coupling of this motion to an unstable transverse vibrational mode. That is, the atomic motions in crystalline bismuth can be electronically accelerated so that the solid-to-liquid phase transition occurs on a sub-vibrational timescale.

6.
Science ; 323(5917): 1033-7, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19164708

ABSTRACT

Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.

7.
Opt Express ; 16(5): 3334-41, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18542423

ABSTRACT

Real time views of atomic motion can be achieved using electron pulses as structural probes. The requisite time resolution requires knowledge of both the electron pulse duration and the exact timing of the excitation pulse and the electron probe to within 10 - 100 fs accuracy. By using an intensity grating to enhance the pondermotive force, we are now able to fully characterize electron pulses and to confirm many body simulations with laser pulse energies on the microjoule level. This development solves one of the last barriers to the highest possible time resolution for electron probes.


Subject(s)
Lasers , Luminescent Measurements/methods , Models, Theoretical , Signal Processing, Computer-Assisted , Computer Simulation , Electrons , Light , Scattering, Radiation
8.
Phys Rev Lett ; 100(15): 155504, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18518123

ABSTRACT

The excitation of a high density of carriers in semiconductors can induce an order-to-disorder phase transition due to changes in the potential-energy landscape of the lattice. We report the first direct resolution of the structural details of this phenomenon in freestanding films of polycrystalline and (001)-oriented crystalline Si, using 200-fs electron pulses. At excitation levels greater than approximately 6% of the valence electron density, the crystalline structure of the lattice is lost in <500 fs, a time scale indicative of an electronically driven phase transition. We find that the relaxation process along the modified potential is not inertial but rather involves multiple scattering towards the disordered state.

9.
J Phys Chem B ; 110(50): 25308-13, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17165976

ABSTRACT

We report on the use of femtosecond electron diffraction to resolve the dynamics of electron-phonon relaxation in silicon. Nanofabricated free-standing membranes of polycrystalline silicon were excited below the damage threshold with 387 nm light at a fluence of 5.6 mJ/cm2 absorbed (corresponding to a carrier density of 2.2 x 10(21) cm(-3)). The diffraction pattern was captured over a range of delay times with a time resolution of 350 fs. All of the detected Bragg peaks exhibited intensity loss with a time constant of less than 2 ps. Beyond the initial decay, there was no further change in the diffracted intensity up to 700 ps. We find that the loss of intensity in the diffracted orders is accounted for by the Debye-Waller effect on a time scale indicative of a thermally driven process as opposed to an electronically driven one. Furthermore, the relaxation time constant is consistent with the excitation regime where the phonon emission rate is reduced due to carrier screening.


Subject(s)
Microscopy, Electron/methods , Silicon/chemistry , Electrons , Sensitivity and Specificity , Silicon/radiation effects , Time Factors , Ultraviolet Rays
10.
Opt Lett ; 31(23): 3517-9, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17099769

ABSTRACT

We demonstrate a method for the measurement of the instantaneous duration of femtosecond electron pulses using the ponderomotive force of an intense ultrashort laser pulse. An analysis procedure for the extraction of the electron pulse duration from the transient change of the transverse electron beam profile is proposed. The durations of the electron pulses generated in our setup were determined to be 410+/-30 fs.

11.
Philos Trans A Math Phys Eng Sci ; 364(1840): 741-78, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16483961

ABSTRACT

Femtosecond electron diffraction (FED) has the potential to directly observe transition state processes. The relevant motions for this barrier-crossing event occur on the hundred femtosecond time-scale. Recent advances in the development of high-flux electron pulse sources with the required time resolution and sensitivity to capture barrier-crossing processes are described in the context of attaining atomic level details of such structural dynamics-seeing chemical events as they occur. Initial work focused on the ordered-to-disordered phase transition of Al under strong driving conditions for which melting takes on nm or molecular scale dimensions. This work has been extended to Au, which clearly shows a separation in time-scales for lattice heating and melting. It also demonstrates that superheated face-centred cubic (FCC) metals melt through thermal mechanisms involving homogeneous nucleation to propagate the disordering process. A new concept exploiting electron-electron correlation is introduced for pulse characterization and determination of t=0 to within 100fs as well as for spatial manipulation of the electron beam. Laser-based methods are shown to provide further improvements in time resolution with respect to pulse characterization, absolute t=0 determination, and the potential for electron acceleration to energies optimal for time-resolved diffraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...