Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Sens ; 9(2): 932-941, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38252743

ABSTRACT

Microneedle-based wearable electrochemical biosensors are the new frontier in personalized health monitoring and disease diagnostic devices that provide an alternative tool to traditional blood-based invasive techniques. Advancements in micro- and nanofabrication technologies enabled the fabrication of microneedles using different biomaterials and morphological features with the aim of overcoming existing challenges and enhancing sensing performance. In this work, we report a microneedle array featuring conductive recessed microcavities for monitoring urea levels in the interstitial fluid of the skin. Microcavities are small pockets on the tip of each microneedle that can accommodate the sensing layer, provide protection from delamination during skin insertion or removal, and position the sensing layer in a deep layer of the skin to reach the interstitial fluid. The wearable urea patch has shown to be highly sensitive and selective in monitoring urea, with a sensitivity of 2.5 mV mM-1 and a linear range of 3 to 18 mM making it suitable for monitoring urea levels in healthy individuals and patients. Our ex vivo experiments have shown that recessed microcavities can protect the sensing layer from delamination during skin insertion and monitor changing urea levels in interstitial fluid. This biocompatible platform provides alternative solutions to the critical issue of maintaining the performance of the biosensor upon skin insertion and holds great potential for advancing transdermal sensor technology.


Subject(s)
Extracellular Fluid , Wearable Electronic Devices , Humans , Skin , Biocompatible Materials , Urea
2.
Nanoscale ; 13(47): 20052-20066, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34842880

ABSTRACT

Nanowire arrays used as cell culture substrates build a potent tool for advanced biological applications such as cargo delivery and biosensing. The unique topography of nanowire arrays, however, renders them a challenging growth environment for cells and explains why only basic cell lines have been employed in existing studies. Here, we present the culturing of human induced pluripotent stem cell-derived neural progenitor cells on rectangularly arranged nanowire arrays: In detail, we mapped the impact on proliferation, viability, and topography-induced membrane deformation across a multitude of array pitches (1, 3, 5, 10 µm) and nanowire lengths (1.5, 3, 5 µm). Against the intuitive expectation, a reduced proliferation was found on the arrays with the smallest array pitch of 1 µm and long NWs. Typically, cells settle in a fakir-like state on such densely-spaced nanowires and thus experience no substantial stress caused by nanowires indenting the cell membrane. However, imaging of F-actin showed a distinct reorganization of the cytoskeleton along the nanowire tips in the case of small array pitches interfering with regular proliferation. For larger pitches, the cell numbers depend on the NW lengths but proliferation generally continued although heavy deformations of the cell membrane were observed caused by the encapsulation of the nanowires. Moreover, we noticed a strong interaction of the nanowires with the nucleus in terms of squeezing and indenting. Remarkably, the cell viability is maintained at about 85% despite the massive deformation of the cells. Considering the enormous potential of human induced stem cells to study neurodegenerative diseases and the high cellular viability combined with a strong interaction with nanowire arrays, we believe that our results pave the way to apply nanowire arrays to human stem cells for future applications in stem cell research and regenerative medicine.


Subject(s)
Induced Pluripotent Stem Cells , Nanowires , Neural Stem Cells , Cell Line , Cell Proliferation , Humans
3.
Sci Rep ; 11(1): 18819, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552130

ABSTRACT

Nanostructured cell culture substrates featuring nanowire (NW) arrays have been applied to a variety of basic cell lines and rodent neurons to investigate cellular behavior or to stimulate cell responses. However, patient-derived human neurons-a prerequisite for studying e.g. neurodegenerative diseases efficiently-are rarely employed due to sensitive cell culture protocols and usually long culturing periods. Here, we present human patient induced pluripotent stem cell-derived neurons cultured on densely-spaced spiky silicon NW arrays (600 NWs/ 100 µm[Formula: see text] with NW lengths of 1 µm) which show mature electrophysiological characteristics after only 20 days of culturing. Exemplary neuronal growth and network formation on the NW arrays are demonstrated using scanning electron microscopy and immunofluorescence microscopy. The cells and neurites rest in a fakir-like settling state on the NWs only in contact with the very NW tips shown by cross-sectional imaging of the cell/NW interface using focused ion beam milling and confocal laser scanning microscopy. Furthermore, the NW arrays promote the cell culture by slightly increasing the share of differentiated neurons determined by the quantification of immunofluorescence microscopy images. The electrophysiological functionality of the neurons is confirmed with patch-clamp recordings showing the excellent capability to fire action potentials. We believe that the short culturing time to obtain functional human neurons generated from patient-derived neural progenitor cells and the robustness of this differentiation protocol to produce these neurons on densely-spaced spiky nanowire arrays open up new pathways for stem cell characterization and neurodegenerative disease studies.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells/physiology , Nanowires , Neural Stem Cells/physiology , Silicon , Humans , Induced Pluripotent Stem Cells/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Neural Stem Cells/ultrastructure
4.
ACS Nano ; 14(10): 13091-13102, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33058673

ABSTRACT

Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using z-stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Brain , Cross-Sectional Studies , Humans , Lab-On-A-Chip Devices , Neurons
5.
Bioengineering (Basel) ; 7(2)2020 May 22.
Article in English | MEDLINE | ID: mdl-32455868

ABSTRACT

Though patch clamping at room temperature is a widely disseminated standard procedure in the electrophysiological community, it does not represent the biological system in mammals at around 37 °C. In order to better mimic the natural environment in electrophysiological studies, we present a custom-built, temperature-controlled patch clamp platform for upright microscopes, which can easily be adapted to any upright patch clamp setup independently, whether commercially available or home built. Our setup can both cool and heat the platform having only small temperature variations of less than 0.5 °C. We demonstrate our setup with patch clamp measurements at 36 °C on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons. Passive membrane parameters and characteristic electrophysiological properties, such as the gating properties of voltage-gated ion channels and the firing of action potentials, are compared to measurements at room temperature. We observe that many processes that are not explicitly considered as temperature dependent show changes with temperature. Thus, we believe in the need of a temperature control in patch clamp measurements if improved physiological conditions are required. Furthermore, we advise researchers to only compare electrophysiological results directly that have been measured at similar temperatures since small variations in cellular properties might be caused by temperature alterations.

6.
Biomater Sci ; 8(9): 2434-2446, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32319455

ABSTRACT

Nanostructured substrates such as nanowire arrays form a powerful tool for building next-generation medical devices. So far, human pluripotent stem cell-derived neurons-a revolutionary tool for studying physiological function and modeling neurodegenerative diseases-have not been applied to such innovative substrates, due to the highly demanding nature of stem cell quality control and directed differentiation procedures to generate specialized cell types. Our study closes this gap, by presenting electrophysiologically mature human pluripotent stem cell-derived neurons on a set of nanowires in different patterns and growth densities after only four weeks of maturation-thereof 14 to 16 days on the nanowire arrays. While cell viability is maintained on all nanowire substrates, the settling regime of the cells can be controlled and tuned by the nanowire density from a fakir-like state to a complete nanowire wrapping state. Especially, full electrophysiological integrity of the neurons independent of the settling regime has been revealed by patch clamp experiments showing characteristic action potentials. Based on these results, our protocol has the potential to open new pathways in stem cell research and regenerative medicine utilizing human stem cell-derived neurons on tailor-made nanostructured substrates.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Neurons/physiology , Cell Survival , Cells, Cultured , Humans , Nanowires , Regenerative Medicine , Silicon Compounds
7.
Nanoscale Adv ; 2(11): 5192-5200, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-36132017

ABSTRACT

Directed guidance of neurites is a pre-requisite for tailor-made designs of interfaces between cells and semiconducting components. Grayscale lithography, reactive ion etching, and ultraviolet nanoimprint lithography are potent semiconductor industry-compatible techniques for a cost- and time-effective fabrication of modulated surfaces. In this work, neurite outgrowth of murine cerebellar neurons on 2.5D pathways produced with these methods is studied. Structures of micron-sized steps and grooves serve as cell culture platforms. The effects of contact guidance through topography and chemical guidance through selective poly-d-lysine coating on these platforms are analyzed. As a consequence, the herein presented fabrication approach can be utilized to cultivate and to study low-density neuronal networks in 2.5D configuration with a high degree of order.

8.
RSC Adv ; 9(20): 11194-11201, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-35520244

ABSTRACT

Nanowire substrates play an increasingly important role for cell cultures as an approach for hybrid bio-semiconductor junctions. We investigate Jurkat T cells and neurons from mice cultured on Al2O3 coated ordered and randomly distributed nanowires. Cell viability was examined by life/membrane staining reporting comparable viability on planar and nanowire substrates. Imaging the hybrid interface reveals a wrapping of the cell membrane around the very nanowire tip. Patch clamp recordings show similar electrophysiological responses on each type of nanowires compared to planar control substrates. We demonstrate that the morphological characteristic of the nanowire substrate plays a subordinate role which opens up the arena for a large range of nanowire substrates in a functionalized application such as stimulation or sensing.

10.
Adv Biosyst ; 3(5): e1800329, 2019 05.
Article in English | MEDLINE | ID: mdl-32627409

ABSTRACT

While modern day integrated electronic circuits are essentially designed in a 2D fashion, the brain can be regarded as a 3D circuit. The thus enhanced connectivity enables much more complex signal processing as compared to conventional 2D circuits. Recent technological advances in the development of nano/microscale 3D structuring have led to the development of artificial neuron culturing platforms, which surpass the possibilities of classical 2D cultures. In this work, in vitro culturing of neuronal networks is demonstrated by determining predefined pathways through topological and chemical neurite guiding. Tailor-made culturing substrates of microtowers and freestanding microtubes are fabricated using direct laser writing by two-photon polymerization. The first scaffold design that allows for site-specific cell attachment and directed outgrowth of single neurites along defined paths that can be arranged freely in all dimensions, to build neuronal networks with low cell density, is presented. The neurons cultured in the scaffolds show characteristic electrophysiological properties of vital cells after 10 d in vitro. The introduced scaffold design offers a promising concept for future complex neuronal network studies on defined neuronal circuits with tailor-made design specific neurite connections beyond 2D.


Subject(s)
Axon Guidance , Lasers , Nerve Net , Neurites/metabolism , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Mice
11.
Langmuir ; 34(4): 1528-1534, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29261324

ABSTRACT

Here we present a designer's approach to building cellular neuronal networks based on a biocompatible negative photoresist with embedded coaxial feedthroughs made of semiconductor microtubes. The diameter of the microtubes is tailored and adjusted to the diameter of cerebellum axons having a diameter of 2-3 µm. The microtubes as well as the SU-8 layer serve as a topographical cue to the axons. Apart from the topographical guidance, we also employ chemical guidance cues enhancing neuron growth at designed spots. Therefore, the amino acid poly-l-lysine is printed in droplets of pl volume in the front of the tube entrances. Our artificial neuronal network has an extremely high yield of 85% of the somas settled at the desired locations. We complete this by basic patch-clamp measurements on single cells within the neuronal network.

SELECTION OF CITATIONS
SEARCH DETAIL
...