Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (101): e52891, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26168285

ABSTRACT

Recent progress in the field of organic materials has yielded devices such as organic light emitting diodes (OLEDs) which have advantages not found in traditional materials, including low cost and mechanical flexibility. In a similar vein, it would be advantageous to expand the use of organics into high frequency electronics and spin-based electronics. This work presents a synthetic process for the growth of thin films of the room temperature organic ferrimagnet, vanadium tetracyanoethylene (V[TCNE]x, x~2) by low temperature chemical vapor deposition (CVD). The thin film is grown at <60 °C, and can accommodate a wide variety of substrates including, but not limited to, silicon, glass, Teflon and flexible substrates. The conformal deposition is conducive to pre-patterned and three-dimensional structures as well. Additionally this technique can yield films with thicknesses ranging from 30 nm to several microns. Recent progress in optimization of film growth creates a film whose qualities, such as higher Curie temperature (600 K), improved magnetic homogeneity, and narrow ferromagnetic resonance line-width (1.5 G) show promise for a variety of applications in spintronics and microwave electronics.


Subject(s)
Ethylenes/chemistry , Magnetics/methods , Magnets , Nitriles/chemistry , Vanadium Compounds/chemistry , Cold Temperature , Electronics/instrumentation , Electronics/methods , Gases/chemistry , Glass , Magnetics/instrumentation
2.
Adv Mater ; 26(45): 7632-6, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25327816

ABSTRACT

The preparation and characterization of a new thin-film organic-based magnet V[MeTCEC]x (V = vanadium; MeTCEC = methyl tricaynoethylenecarboxylate) via low-temperature chemical vapor deposition (50 °C) is reported. These thin films exhibit room-temperature magnetic ordering and semiconducting behavior, demonstrating the ability of tuning their magnetic, and potentially spintronic, functionality via chemical modification of the organic ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...