Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleus ; 5(4): 352-66, 2014.
Article in English | MEDLINE | ID: mdl-25482124

ABSTRACT

Appropriate targeting of inner nuclear membrane (INM) proteins is important for nuclear function and architecture. To gain new insights into the mechanism(s) for targeting and/or tethering peripherally associated proteins to the INM, we screened a collection of temperature sensitive S. cerevisiae yeast mutants for defects in INM location of the peripheral protein, Trm1-II-GFP. We uncovered numerous genes encoding components of the Spindle Pole Body (SPB), the yeast centrosome. SPB alterations affect the localization of both an integral (Heh2) and a peripheral INM protein (Trm1-II-GFP), but not a nucleoplasmic protein (Pus1). In wild-type cells Trm1-II-GFP is evenly distributed around the INM, but in SPB mutants, Trm1-II-GFP mislocalizes as a spot(s) near ER-nucleus junctions, perhaps its initial contact site with the nuclear envelope. Employing live cell imaging over time in a microfluidic perfusion system to study protein dynamics, we show that both Trm1-II-GFP INM targeting and maintenance depend upon the SPB. We propose a novel targeting and/or tethering model for a peripherally associated INM protein that combines mechanisms of both integral and soluble nuclear proteins, and describe a role of the SPB in nuclear envelope dynamics that affects this process.


Subject(s)
Nuclear Envelope/metabolism , Spindle Pole Bodies/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...