Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neonatology ; 108(3): 220-8, 2015.
Article in English | MEDLINE | ID: mdl-26304262

ABSTRACT

BACKGROUND: The mode of waveform generation and circuit characteristics differ between high-frequency oscillators. It is unknown if this influences performance. OBJECTIVES: To describe the relationships between set and delivered pressure amplitude (x0394;P), and the interaction with frequency and endotracheal tube (ETT) diameter, in eight high-frequency oscillators. METHODS: Oscillators were evaluated using a 70-ml test lung at 1.0 and 2.0 ml/cm H2O compliance, with mean airway pressures (PAW) of 10 and 20 cm H2O, frequencies of 5, 10 and 15 Hz, and an ETT diameter of 2.5 and 3.5 mm. At each permutation of PAW, frequency and ETT, the set x0394;P was sequentially increased from 15 to 50 cm H2O, or from 20 to 100% maximum amplitude (10% increments) depending on the oscillator design. The x0394;P at the ventilator (x0394;PVENT), airway opening (x0394;PAO) and within the test lung (x0394;PTRACH), and tidal volume (V(T)) at the airway opening were determined at each set x0394;P. RESULTS: In two oscillators the relationships between set and delivered x0394;P were non-linear, with a plateau in x0394;P thresholds noted at all frequencies (Dräger Babylog 8000) or ≥10 Hz (Dräger VN500). In all other devices there was a linear relationship between x0394;PVENT, x0394;PAO and x0394;PTRACH (all r2 >0.93), with differing attenuation of the pressure wave. Delivered V(T) at the different settings tested varied between devices, with some unable to deliver V(T) >3 ml at 15 Hz, and others generating V(T)>20 ml at 5 Hz and a 1:1 inspiratory-to-expiratory time ratio. CONCLUSIONS: Clinicians should be aware that modern high-frequency oscillators exhibit important differences in the delivered x0394;P and V(T).


Subject(s)
High-Frequency Ventilation/standards , Tidal Volume/physiology , Ventilators, Mechanical/classification , Intubation, Intratracheal , Pressure
2.
Pediatr Crit Care Med ; 15(5): e234-40, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24717904

ABSTRACT

OBJECTIVES: The differences in performance of early generation high-frequency oscillators have been attributed to their distinct pressure and flow waveforms. Recently, five new oscillators have been commercially released. The objective of this study was to characterize the pressure and flow waveforms of eight commercially available oscillators. DESIGN: In vitro benchtop study. SETTING: Tertiary pediatric teaching hospital. INTERVENTIONS: Eight oscillators were evaluated using a test lung; mean airway pressure 10 and 20 cm H2O; frequencies 5, 10, and 15 Hz; pressure amplitude 30 cm H2O (or equivalent); compliance 1.0 mL/cm H2O; and endotracheal tube 3.5 mm. Ventilators tested were Sensormedics 3100A and B (Carefusion), SLE5000 (SLE), Fabian (Acutronic), Leonie+ (Heinen+Löwenstein), Sophie (Stephan), and VN500 and Babylog 8000 (Dräger). MEASUREMENTS AND MAIN RESULTS: Pressure (airway opening, at oscillator and within the test lung) and airway opening flow waveforms were recorded. Airway opening waveforms were characterized by type (square or sine) and by determining power spectral density analysis. The Sensormedics A and B and the SLE5000 delivered square waves; all other oscillators generated sine waves. Sensormedics, the SLE5000, and the Sophie had a characteristic inspiratory slope (incisura). The pressure waveform within the test lung was a sine wave for all oscillators. Oscillators with square waves or an inspiratory incisura exhibited the highest number of nonfundamental frequency components on power spectral density analysis, suggesting more complex harmonic waveforms with potentially greater transmissive power to the lungs. At frequencies of 5 and 10 Hz, all ventilators, except Babylog 8000, generated airway pressure amplitudes greater than 28.6 cm H2O and tidal volumes greater than 6 mL at the airway opening. CONCLUSIONS: Current high-frequency oscillators deliver different waveforms. As these may result in variable clinical performance, operators should be aware that these differences exist.


Subject(s)
Air Pressure , High-Frequency Ventilation/instrumentation , Ventilators, Mechanical , Fourier Analysis
3.
J Paediatr Child Health ; 50(1): 27-31, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24118670

ABSTRACT

AIM: The aim of this study is to compare the high-frequency pressure amplitude (oscillatory change in pressure (ΔP)) and tidal volume (high-frequency tidal volume at the airway opening (VTHF )) delivered by the Dräger VN500 (Drägerwerk Ag & Co., Lübeck, Germany) and the Sensormedics 3100 (SM3100; CareFusion, San Diego, CA, USA) through a range of oscillatory frequencies. METHODS: In this benchtop study, high-frequency oscillations were applied to an infant test lung at unrestricted set amplitudes. Pressure and flow were measured as a function of frequency, incremented by 1 Hz from 5 to 15 Hz. Measurements were repeated for a range of ventilator settings, and lung resistive and compliance states. RESULTS: The VN500, but not the SM3100, demonstrated an exponential decrease in airway opening ΔP as frequency increased. The difference between the SM3100- and VN500-delivered VTHF became greater with each frequency increment. At 15 Hz, VN500 VTHF was 49% of SM3100 VTHF . CONCLUSIONS: The VN500 demonstrates a frequency-related reduction in ΔP not observed in the SM3100. Clinicians need to be aware of these differences in performance characteristics.


Subject(s)
High-Frequency Ventilation , Ventilators, Mechanical , Humans , Infant, Newborn , Lung , Models, Biological , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...